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Guarding Points on a Terrain by Watchtowers ∗

Byeonguk Kang† Junhyeok Choi‡ Jeesun Han† Hee-Kap Ahn§

Abstract

We study the problem of guarding points on an x-
monotone polygonal chain, called a terrain, using k
watchtowers. A watchtower is a vertical segment whose
bottom endpoint lies on the terrain. A point on the
terrain is visible from a watchtower if the line segment
connecting the point and the top endpoint of the watch-
tower does not cross the terrain. Given a sequence of
point sites lying on a terrain, we aim to partition the
sequence into k contiguous subsequences and place k
watchtowers on the terrain such that every point site in
a subsequence is visible from the same watchtower and
the maximum length of the watchtowers is minimized.
We present efficient algorithms for two variants of the
problem.

1 Introduction

A terrain is a graph of a piecewise linear function
f : A ⊂ R → R that assigns a height f(p) to every
point p in the domain A of the terrain. In other words,
a terrain is an x-monotone polygonal chain in the plane.
A watchtower is a vertical segment whose bottom end-
point lies on the terrain. A point on the terrain is visible
from a watchtower if the line segment connecting the
point and the top endpoint of the watchtower does not
cross the terrain. If a point is visible from a watchtower,
we say that the point is guarded by the watchtower. We
say that a set of points is guarded by a watchtower if
every point in the set is guarded by the watchtower.

In this paper, we study the following problem of
guarding point sites on a terrain using k watchtowers:
Given a sequence of point sites on a terrain, partition
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it into k subsequences and place k watchtowers on the
terrain such that every point site in a subsequence is
guarded by the same watchtower and the maximum
length of the watchtowers is minimized. We call it the
contiguous k-watchtower problem for point sites on a
terrain. We also consider the problem with an addi-
tional condition on the placement of watchtowers: a
watchtower guarding a subsequence of point sites must
be placed in the x-range xmin ⩽ xw ⩽ xmax of the point
sites in the subsequence, where xw is the x-coordinate
of the watchtower and xmin (resp. xmax) is the mini-
mum (resp. maximum) x-coordinates of the point sites
in the subsequence. This is the in-place version of the
contiguous k-watchtower problem for point sites on a
terrain. For both problems, we call those k watchtowers
satisfying the conditions and minimizing the maximum
length the optimal k watchtowers. See Figure 1 for an
illustration for the problems.
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Figure 1: (a) Optimal watchtowers for the contiguous
2-watchtower problem. The red tower guards p1 and
p2, and the blue tower guards p3 and p4. (b) Optimal
watchtowers for the in-place version. The red watch-
tower guards p1 and p2, and it is placed in the x-range
of p1 and p2. The blue watchtower guards p3 and p4,
and it is placed in the x-range of p3 and p4. To guard
point sites including both p2 and p3 using one watch-
tower, the watchtower must be at least as long as the
gray watchtower.

The k-watchtower problems we consider have applica-
tions in several domains, including geographic informa-
tion system, communication tower locations, and mili-
tary surveillance [4].

1.1 Related works

A fair amount of work has been done on minimizing the
number of guards in various settings. The art gallery
problem [10] asks for the minimum number of point
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guards that together guard the whole art gallery, repre-
sented by a simple polygon. The art gallery problem was
first posed by Klee in 1973 [10]. Chvátal and Fisk [5, 8]
gave an upper bound ⌊n/3⌋ on the minimum number of
point guards for a simple polygon with n vertices.
The terrain guarding problem [9] asks for the mini-

mum number of point guards lying on the terrain that
together guard the terrain. Cole and Sharir [6] showed
that finding the minimum number of guards for a poly-
hedral terrain in 3-dimensional space is NP-complete.
Later, Chen et al. [3] showed that the same problem for
a terrain in 2-dimensional space is also NP-complete.

The k-watchtower problem for a terrain with n ver-
tices in 2-dimensional space is to minimize the maxi-
mum length of k watchtowers that together guard the
whole terrain. The 2-watchtower problem was first stud-
ied by Bespamyatnikh et al. [2]. They presented an
O(n3 log2 n)-time algorithm for the variant, called the
discrete version, in which every watchtower must be
placed at a vertex of the terrain. They also gave an
O(n4 log2 n)-time algorithm for the continuous version
in which the two watchtowers can be placed anywhere
in the terrain. Agarwal et al. [1] improved the results
by an O(n2 log4 n)-time algorithm for the discrete ver-
sion and by an O(n3α(n) log3 n)-time algorithm for the
continuous version.

There are also a few results for the k-watchtower
problem for a 2-dimensional terrain with n vertices
in 3-dimensional space. Agarwal et al. [1] presented
an O(n11/3polylog(n))-time algorithm for the discrete
version of the 2-watchtower problem. Recently, Tri-
pathi et al. [12] gave an algorithm for the discrete
version of the k-watchtower problem that runs in
O(nk+3k2α2(n) log2 n+ n7α3(n) log n) time.
To the best of our knowledge, little is known about

guarding a finite set of input points lying on a terrain,
not the whole terrain, except the one by Agarwal et
al. [1]. They considered the 2-watchtower problem for
guarding a finite set of m point sites on a terrain with
n vertices in 2-dimensional space where every point site
must be guarded by at least one of the two watchtowers.
The watchtowers can be placed anywhere in the terrain.
They presented an O(mn log4 n)-time algorithm for the
problem. One may wonder if this algorithm extends to
the k-watchtower problem for k ⩾ 3. It seems to us that
it does, but the running time becomes exponential in k
for m point sites lying on a terrain with n vertices.

1.1.1 Our results.

We consider the contiguous k-watchtower problem and
the in-place contiguous k-watchtower problem for m
point sites lying on a terrain with n vertices in the
plane. For ease of the description, we may call the
in-place contiguous k-watchtower problem the in-place
k-watchtower problem. If k ⩾ m (resp. k ⩾ n), we

place one watchtower with zero length on every point
site (resp. on every vertex of the terrain). Considering
the cost of watchtowers, it is desirable to use a small
number of watchtowers for point sites. Therefore, we
assume that k ≪ min{n,m}.
For k = 1, we present an algorithm with running time

O(m+ n) for both problems. Observe that the running
time is linear to the complexity of the input. This is an
improvement upon the previously best algorithm with
running time O(mn) [1].

For the contiguous k-watchtower problem, the watch-
towers can be placed anywhere in the terrain. We show
a monotonicity on the minimum length of a watch-
tower, and present an O((m+ n) logm)-time algorithm
for k = 2. For k ⩾ 3, we can solve the problem in
O(k(n + m) log⌈log2 k⌉ m) time. Our algorithm runs in

O((m+ n) log⌈log2 k⌉ m) time for any fixed k.
For the in-place k-watchtower problem, a watchtower

guarding a contiguous subsequence of point sites must
be placed in the x-range of the subsequence. We ob-
serve that the monotonicity shown for the contiguous
k-watchtower problem does not hold for this problem.
We present an O((m + n) log(m + n))-time algorithm
for k = 2 and an O(km2 + (mn + m2) log(m + n))-
time algorithm for k ⩾ 3. Our algorithm runs in
O((mn+m2) log(m+ n)) time for any fixed k ⩾ 3.

1.1.2 Sketch of our algorithms.

We devise an efficient algorithm for the contiguous k-
watchtower problem for k = 1 that runs in O(m + n)
time. The visibility region of a point site is the set
of points visible from the point site. To find an opti-
mal watchtower, we need to compute the intersection of
the visibility regions of point sites. The previous algo-
rithm takes O(mn) time in computing visibility regions
of point sites and their intersection [1]. To do this ef-
ficiently, we define a region W (p, q) for a pair of point
sites (p, q) such that W (p, q) contains the intersection
of the visibility regions of p and q. We show that the
intersection of visibility regions of all point sites can be
computed in O(m + n) time using the intersection of
W (p, q)’s for all pairs of point sites (p, q). From this, we
can compute an optimal watchtower for m point sites
lying on a terrain with n vertices in O(m+ n) time.

For k ⩾ 2, we show a monotonicity stating that the
length of an optimal watchtower for a subsequence P1

of point sites is at least the length of an optimal watch-
tower for any subsequence of P1. Based on the mono-
tonicity, our algorithm for the contiguous k-watchtower
problem uses binary search to find an optimal partition
of the point site set that minimizes the maximum length
of the watchtowers. In each step of the binary search,
we partition the point site sequence into two contiguous
subsequences. Then, we compute the optimal length of
the watchtowers for each subsequence using half of the
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watchtowers. If the optimal length of the watchtowers
for the left subsequence is larger than the right subse-
quence’s, then we find an optimal partition index in the
left half of indices of the point site set. When the num-
ber of the watchtower is one, we can compute the opti-
mal length of the half of the watchtowers in O(m + n)
time by using the algorithm for one watchtower.

In the in-place k-watchtower problem, the mono-
tonicity used for our algorithm for the contiguous k-
watchtower problem does not hold. So we consider ev-
ery possible partition of the sequence into k contiguous
subsequences. For k = 2, there are O(m) different par-
titions. A näıve approach is to compute the optimal
tower-length for every partition in O(m2 + mn) total
time by applying the algorithm for the contiguous 1-
watchtower problem. We compute optimal watchtowers
efficiently as follows. For every prefix of the input se-
quence of point sites, we compute the intersection of
W (p, q)’s for every pair of point sites (p, q) in the pre-
fix. We compute those intersections incrementally in
the length of the prefixes in O((m+n) log(m+n)) total
time. Using those intersections, we can compute opti-
mal two watchtowers in O((m+ n) log(m+ n)) time.

For k ⩾ 3, a näıve approach is to consider
O(mk−1) different partitions, compute their optimal
tower-lengths, and then return the minimum one among
them. To compute optimal k watchtowers efficiently, we
compute the minimum length of one watchtower for ev-
ery contiguous subsequence incrementally in O((m2 +
mn) log(m+ n)) total time in the preprocessing. Then
we find an optimal partition by dynamic programming
that has O(km2) subproblems.

Most proofs are omitted and they will be given in a
full version.

2 Preliminaries

For a point p in the plane, we use x(p) and y(p) to denote
the x- and y-coordinates of p. For two distinct points
p and q in the plane, let pq denote the line segment
connecting p and q, and let pq denote the line passing
through both p and q. For a nonvertical line L, we use
L+ to denote the set of points in R2 that lie on or above
L, and L− to denote the set of points in R2 that lie on
or below L.

A region A is x-monotone if for every line L per-
pendicular to the x-axis, A ∩ L is connected. A region
A is unbounded vertically upwards if any vertically up-
ward ray emanating from a point in A is contained in
A. A polygonal chain B is x-monotone if for every line
L perpendicular to the x-axis, either B ∩ L = ∅ or it
is a point. We use T = ⟨v1, . . . , vn⟩, a sequence of
vertices with x(vi) < x(vj) for any 1 ⩽ i < j ⩽ n,
to denote an x-monotone polygonal chain which we
call a terrain in 2-dimensional space. Without loss

of generality, we assume n ⩾ 2. For any two points
p, q ∈ T with x(p) ⩽ x(q), let T (p, q) denote the sub-
chain of T from p to q, and let T+(p, q) denote the set
of points z ∈ R2 such that x(p) ⩽ x(z) ⩽ x(q) and
y(z) ⩾ y(z′), where z′ is a point in T with x(z) = x(z′).
We simply use T+ to denote T+(v1, vn). We denote by
P = ⟨p1, . . . , pm⟩ a sequence of m point sites lying on
T such that x(pi) < x(pj) for 1 ⩽ i < j ⩽ m. We de-
note by P (i, j) the contiguous subsequence ⟨pi, . . . , pj⟩
of P for 1 ⩽ i < j ⩽ m. For ease of description, we as-
sume that m ⩾ 2, and let p0 = v1 and pm+1 = vn. We
use T (i, j) to denote T (pi, pj), and T+(i, j) to denote
T+(pi, pj).

A point p ∈ R2 is visible from a point q ∈ R2 if
and only if pq is contained in T+. For a point q ∈ T ,
let V (q) denote the visibility region of q, which consists
of the points in T+ visible from q. For a point site
pi ∈ P , we use V (i) to denote V (pi). Observe that
V (i) is connected and unbounded vertically upwards.
Let V(i, j) =

⋂
i⩽ℓ⩽j V (pℓ). The following observation

is straightforward.

Observation 1 The point sites in P (i, j) are visible
from a watchtower if and only if the top endpoint of
the watchtower is contained in V(i, j).

For any two real values a, b with a ⩽ b, we use S(a, b)
to denote the vertical slab between the lines x = a and
x = b. In other words, it is the set of points z ∈ R2

such that a ⩽ x(z) ⩽ b. For any two points p, q ∈ R2

with x(p) ⩽ x(q), we abuse the notation so that S(p, q)
denotes S(x(p), x(q)). We use S(i, j) to denote S(pi, pj).
For a set A ⊂ R2, we use S(A) to denote the smallest
vertical slab containing A.

For any two sets A and B of points, let dy(A,B) de-
note the minimum vertical distance between A and B,
that is, dy(A,B) = minpA∈A,pB∈B |y(pA) − y(pB)| sub-
ject to x(pA) = x(pB). If there are no two points pA ∈ A
and pB ∈ B with x(pA) = x(pB), we set dy(A,B) = ∞.
We say that A lies left to B if the rightmost point p of
A and the leftmost point of q of B satisfy x(p) ⩽ x(q).

3 Contiguous k watchtowers

In this section, we present an O(k(n+m) log⌈log2 k⌉ m)-
time algorithm for the contiguous k-watchtower prob-
lem for point sites P on a terrain T . In Section 3.1,
we present an O(m + n)-time algorithm for comput-
ing an optimal watchtower for P = ⟨p1, . . . , pm⟩. We
use the algorithm for one watchtower together with bi-
nary search in computing the optimal k watchtowers for
k ⩾ 2 in Sections 3.2 and 3.3. For any constant k, the
algorithm runs in near-linear time: O((m + n) logm)

time for k = 2, and O((m + n) log⌈log2 k⌉ m) time for
any fixed k.
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3.1 An optimal watchtower for a site sequence

We consider the problem of placing a shortest watch-
tower that guards all point sites of P . Let F (1,m) de-
note the minimum length of a watchtower that guards
all point sites in P . By Observation 1, any watchtower
guarding point sites in P must have its top endpoint
contained in V(1,m). Thus, F (1,m) = dy(T,V(1,m)).

A straightforward way to compute an optimal watch-
tower for the sequence is to compute V (ℓ) for all ℓ =
1, . . . ,m, compute their intersection V(1,m), and then
compute F (1,m). Observe that it already takes O(mn)
time for computing V (ℓ) for all ℓ = 1, . . . ,m [11].

We show how to compute V(1,m) =
⋂

1⩽ℓ⩽m V (ℓ)
efficiently, in O(m + n) time. Before showing this, we
need to define a region R(1,m) for P (1,m). Let L be
line p1pm if pm is visible from p1. If pm is not visible
from p1, let L be line uv, where uv is the edge of V (1)
with x(u) < x(pm) ⩽ x(v). If pm lies on a vertex of
T , let R(1,m) be the set of points z ∈ L+ satisfying
x(z) ⩾ x(pm). If pm is contained in the interior of an
edge e of T , let R(1,m) be the set of points z ∈ L+∩e+

satisfying x(z) ⩾ x(pm). See Figure 2 for an illustration
for four possible cases. We define the region R(m, 1)
symmetrically.
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Figure 2: R(1,m) in gray region. (a) pm lying on a
vertex of T and visible from p1. (b) pm lying on a vertex
of T and not visible from p1. (c) pm lying in the interior
of an edge e of T and visible from p1. (d) pm lying in
the interior of an edge e of T and not visible from p1.

By definition, R(1,m) is the intersection of two or
three closed half-planes. Thus, R(1,m) is convex. More-
over, it is unbounded vertically upwards.

Combining R(1,m), R(m, 1), and V (1) ∩ V (m) re-
stricted to S(1,m), we define W (1,m) as follows. See

p1
pm

R(m, 1)

R(1,m)

V (1) ∩ V (m) ∩ S(1,m)

Figure 3: The purple region is V (1) ∩ V (m) ∩ S(1,m).
W (1,m) is the union of the purple region and the right
gray region from R(1,m) and the left gray region from
R(m, 1).

Figure 3 for an illustration.

W (1,m) = R(1,m)∪R(m, 1)∪
(
V (1)∩V (m)∩S(1,m)

)
.

By definition, W (1,m) is connected and unbounded
vertically upwards.

Observation 2 The followings hold by the definition of
W (1,m).

(a) W (1,m) ∩ S(1,m) = V (1) ∩ V (m) ∩ S(1,m).
(b) W (1,m) ∩ S(0, 1) = R(m, 1) ∩ S(0, 1).
(c) W (1,m) ∩ S(m,m+ 1) = R(1,m) ∩ S(m,m+ 1).
(d) For q ∈ {p1, pm}, y(q) ⩽ y(z) for all z ∈ W (1,m)

with x(z) = x(q).

Based on Observation 2, we can compute W (1,m)
efficiently.

Lemma 1 We can compute W (1,m) in time linear to
the complexity of T (1,m).

By Lemma 1, W (ℓ, ℓ + 1) can be computed in time
linear to the complexity of T (ℓ, ℓ + 1). Thus, we can
compute W (ℓ, ℓ + 1) for all ℓ = 1, . . . ,m in O(m + n)
time. We show a few properties useful for computing
V(1,m) efficiently.

Lemma 2 V(1,m) =
⋂

1<ℓ⩽m W (ℓ− 1, ℓ) ∩ V (1) ∩
V (m).

LetX1 =
⋂

1<ℓ⩽r R(ℓ−1, ℓ),X2 =
⋂

r<ℓ⩽m R(ℓ, ℓ−1),
X3 = V (r)∩V (r+1)∩V (1)∩V (m), andX4 = S(r, r+1).
By Lemma 2 and Observation 2(c),

V(1,m) ∩ S(r, r + 1) = X1 ∩X2 ∩X3 ∩X4. (1)

We need the following lemma to show that V(1,m)
can be computed in O(m+ n) time.

Lemma 3 We can compute
⋂

1<ℓ⩽r R(ℓ−1, ℓ)∩S(r, r+
1) for all r = 2, . . . ,m in O(m+ n) time.
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Theorem 4 We can compute a minimum-length
watchtower that guards m point sites lying on an x-
monotone polygonal chain with n vertices in O(m + n)
time.

Proof. Note that F (1,m) = dy(T,V(1,m)). First, we
show how to compute V(1,m) in O(m + n) time. We
can get V(1,m) by gluing V(1,m) ∩ S(0, 2), V(1,m) ∩
S(2,m− 1), and V(1,m) ∩ S(m− 1,m+ 1).
We compute V(1,m)∩S(r, r+1) for all r = 2, . . . ,m−

1 which is defined in Equation 1. By Lemma 3, we
can compute

⋂
1<ℓ⩽r R(ℓ− 1, ℓ) ∩ S(r, r+ 1) for all r =

2, . . . ,m−1 in O(m+n) time. Their total complexity is
O(m+ n). Similarly, we can compute

⋂
r<ℓ⩽m R(ℓ, ℓ−

1)∩S(r, r+1) for all r = 2, . . . ,m−1 in O(m+n) time.
Their total complexity is O(m + n). By Lemma 1, we
can compute V (r) ∩ V (r + 1) ∩ S(r, r + 1) for all r =
2, . . . ,m− 1 in O(m+ n) time. Their total complexity
is O(m + n). Recall that we can compute V (1) and
V (m) in O(n) time [11]. Observe that every region that
we compute is x-monotone. Thus, we can compute the
intersections V(1,m)∩S(r, r+1) of those regions for all
r = 2, . . . ,m− 1 in time linear to their total complexity
O(m+n) by linear scan. Similarly, V(1,m)∩S(0, 2) and
V(1,m)∩S(m−1,m+1) can be computed in O(m+n)
time.
We glue V(1,m)∩S(0, 2), V(1,m)∩S(2,m− 1), and

V(1,m) ∩ S(m − 1,m + 1) together and get V(1,m).
Since the complexity of V(1,m) is O(m + n), we can
compute F (1,m) = dy(T,V(1,m)) in O(m + n) time
by linear scan. We compute the location of an optimal
watchtower during the scan. □

3.2 Two watchtowers

We consider the contiguous k-watchtower problem for
k = 2: Partition P into 2 subsequences and place 2
watchtowers on T such that every point site in a sub-
sequence is guarded by the same watchtower and the
maximum length of the watchtowers is minimized.
Recall that P (i, j) denotes the contiguous subse-

quence ⟨pi, . . . , pj⟩ of P = ⟨p1, . . . , pm⟩ for 1 ⩽ i < j ⩽
m. Let F (i, j) denote the minimum length of a watch-
tower that guards point sites in P (i, j) lying on T . We
have the following lemma stating the monotonicity on
F (i, j) obtained by V(i′, j′) ⊆ V(i, j).

Lemma 5 For indices i′, i, j and j′ satisfying 1 ⩽ i′ ⩽
i ⩽ j ⩽ j′ ⩽ m, F (i, j) ⩽ F (i′, j′).

For an index i with 1 ⩽ i < m, let F1(i) = F (1, i)
and F2(i) = F (i + 1,m). Then the minimum length
for two watchtowers is min1⩽i<m{max{F1(i), F2(i)}}.
By Lemma 5, F1(i) increases monotonically and F2(i)
decreases monotonically as i increases from 1 to m− 1.
Therefore, we find the index that achieves the minimum
length by binary search. Since P consists of m point

sites, the number of binary search steps is O(logm). By
Theorem 4, the comparison in each step can be done
in O(m + n) time. In other words, we can compute
both F1(i) and F2(i) for any index i = 1, . . . ,m − 1 in
O(m + n) time. Also, we can compute the location of
an optimal watchtower for P (i, j) for any index 1 ⩽ i ⩽
j ⩽ m in O(m + n) time by Theorem 4. Therefore, we
can compute the optimal two watchtowers in O((m +
n) logm) time.

Theorem 6 We can compute optimal two watchtowers
for the contiguous 2-watchtower problem with m point
sites lying on an x-monotone polygonal chain with n
vertices in O((m+ n) logm) time.

3.3 k watchtowers

In this section, we present an O(k(n+m) log⌈log2 k⌉ m)-
time algorithm for computing the contiguous k watch-
towers of minimum length for k ⩾ 3. Roughly speaking,
we partition P into two contiguous subsequences and
compute the minimum tower-length for one subsequence
using ⌊k/2⌋ watchtowers and the minimum tower-length
for the other subsequence using ⌈k/2⌉ watchtowers. We
repeat this recursively.

For indices 1 ⩽ i ⩽ j ⩽ m, let opt(i, j, k′) de-
note the minimum tower-length for P (i, j) using k′

watchtowers with k′ ⩾ 1. Obviously, opt(i, j, k′) ⩾
opt(i, j, k′ + 1). Observe that opt(i, j, 1) = F (i, j). For
k′ ⩾ 2, opt(i, j, k′) equals to

min
i⩽ℓ<j

{max{opt(i, ℓ, ⌊k′/2⌋), opt(ℓ+ 1, j, ⌈k′/2⌉)}}.

Lemma 7 opt(1, i, k′) ⩽ opt(1, j, k′) for 1 ⩽ i ⩽ j ⩽ m
and k′ ⩾ 1.

The minimum tower-length for P (1,m) using k
watchtowers is opt(1,m, k). By Lemma 7, we can find an
index ℓ = argmin1⩽ℓ<m max{opt(1, ℓ, ⌊k′/2⌋), opt(ℓ +
1,m, ⌈k′/2⌉)} by binary search. Therefore, we conclude
this section with Theorem 8.

Theorem 8 We can compute optimal k watchtowers
for the contiguous k-watchtower problem with m point
sites lying on an x-monotone polygonal chain with n
vertices in O(k(n+m) log⌈log2 k⌉ m) time.

4 In-place contiguous k watchtowers

In this section, we present algorithms for the in-place k-
watchtower problem for P lying on T . In this problem,
a watchtower that guards a subsequence P (i, j) must be
placed in T (i, j). By the problem definition, no watch-
tower cannot be placed on T (0, 1)∪T (m,m+1). Thus,
for ease of discussion, we assume that p1 lies on v1 and
pm lies on vn.
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In Section 4.1, we present an O((m+ n) log(m+ n))-
time algorithm for k = 2. The algorithm works in
incremental fashion in computing an optimal solution
using a balanced binary search tree based on the seg-
ment tree [7]. In Section 4.2, we present an O(km2 +
(mn +m2) log(m + n))-time algorithm for k ⩾ 3. The
algorithm uses dynamic programming in computing an
optimal solution, using the O((m+ n) log(m+ n))-time
algorithm for k = 2 for the base case.

p1 p2

p3

p4

Figure 4: The vertical red line segments, left to right,
are the shortest watchtowers for P (1, 2), P (1, 3), and
P (1, 4). We have F1(2) > F1(3) and F1(3) < F1(4).

4.1 Two watchtowers

Let F (i, j) denote the minimum length of one watch-
tower placed on T (i, j) for P (i, j) with 1 ⩽ i ⩽ j ⩽ m.
Let F1(i) = F (1, i) and F2(i) = F (i + 1,m). Then our
goal is to compute min1⩽i<m{max{F1(i), F2(i)}}.

Observe that the monotonicity in Lemma 5 does
not hold for the in-place k-watchtower problem due
to the in-place requirement. For two indices i, j with
1 ⩽ i < j ⩽ m, the watchtower for P (1, j) can be
placed anywhere in T (1, j) = T (1, i) ∪ T (i, j) while the
watchtower for P (1, i) must be placed in T (1, i). So it
is possible that F1(i) > F1(j). See Figure 4.
We use an incremental algorithm for computing F1(i)

and F2(i) for all i = 1, . . . ,m − 1 that runs in O((m +
n) log(m+n)) time. Recall that we can compute W (i−
1, i) for all i = 2, . . . ,m in O(m+ n) time by Lemma 1.
Thus, we compute their intersection incrementally.

LetW(i) =
⋂

1<ℓ⩽i W (ℓ−1, ℓ). Recall thatW (ℓ−1, ℓ)
is connected and unbounded vertically upwards. Thus,
W(i) is connected and unbounded vertically upwards.

Lemma 9 V(1, i) ∩ S(1, i) = W(i) ∩ S(1, i).

Corollary 10 dy(T (1, i),V(1, i)) = dy(T (1, i),W(i)).

By Observation 1, Lemma 9, and Corollary 10,
F1(i) = dy(T (1, i),W(i)). Our algorithm starts with
trivial base case F1(1) = 0 and computes F1(i) for all
i = 2, . . . ,m− 1 one by one incrementally.
First, we show that W(i) for all i = 2, . . . ,m can be

computed in O((m + n) log(m + n)) time in total. We

can compute W(2) = W (1, 2) in O(m + n) time. We
show how to compute W(i + 1) = W(i) ∩ W (i, i + 1)
from W(i) efficiently. To do this, we show that the
boundary of W (i, i+1) intersects the boundary of W(i)
in O(|T (i, i + 1)|) connected components. In specific,
each edge of W (i, i+1) intersects the boundary of W(i)
at most twice.

Lemma 11 We can compute F1(i) and F2(i) for all
i = 1, . . . ,m− 1 in O((m+ n) log(m+ n)) time.

Recall that the minimum tower-length is
min1⩽i<m{max{F1(i), F2(i)}}. By Lemma 11, we
can compute F1(i) and F2(i) in O((m+ n) log(m+ n))
time for all i = 1, . . . ,m − 1. Then, we can find
min1⩽i<m{max{F1(i), F2(i)}} in O(m) time. Recall
that we can compute an optimal watchtower that
guards P (i, j) in O(m + n) time by Theorem 4. In
conclusion, we can compute the minimum tower-length
and the locations of the optimal watchtowers in
O((m+ n) log(m+ n)) time.

Theorem 12 We can compute optimal two watchtow-
ers for the in-place contiguous 2-watchtower problem
with m point sites lying on an x-monotone polygonal
chain with n vertices in O((m+ n) log(m+ n)) time.

4.2 k watchtowers

Now we consider the in-place contiguous k watchtower
problem for k ⩾ 3. By the definition of the problem,
the minimum tower-length is

min
1⩽i1<...<ik−1<m

{max{F (1, i1), . . . , F (ik−1 + 1,m)}}.

A näıve approach is to consider all combinations of k−1
point sites with indices 1 ⩽ i1 < . . . < ik−1 < m among
m point sites, compute their maximum tower-lengths
max{F (1, i1), F (i1+1, i2), . . . , F (ik−1+1,m)}, and then
return the minimum one among the tower-lengths. This
takes O(mk−1(m+ n)) time.
We can improve the running time using dynamic

programming as follows. For an index 1 ⩽ i ⩽ m,
let opt(i, k′) denote the minimum tower-length for the
in-place k′-watchtower problem for P (1, i). Then (1)
opt(i, 1) = F (1, i), (2) opt(i, k′) = 0 if k′ > 1 and i ⩽ k′,
and (3) opt(i, k′) = min1⩽j<i{max{opt(j, k′ − 1), F (j +
1, i)}} if k′ > 1 and i > k′.
The optimal length is opt(m, k) and the number of

subproblems isO(km2). To obtain opt(m, k), we need to
compute F (i, j) for all 1 ⩽ i ⩽ j ⩽ m. By Theorem 12,
for a fixed index 1 ⩽ i ⩽ m, we can compute F (i, j) for
all i ⩽ j ⩽ m in O((m+n) log(m+n)) time. Therefore,
we have the following lemma.

Lemma 13 We can compute F (i, j) for every 1 ⩽ i ⩽
j ⩽ m in O((mn+m2) log(m+ n)) time.
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After O((mn+m2) log(m+n))-time preprocessing by
Lemma 13, we can compute the minimum tower-length
in O(km2) time using dynamic programming.

Theorem 14 We can compute optimal k watchtowers
for the in-place contiguous k-watchtower problem with
m point sites lying on an x-monotone polygonal chain
with n vertices in O(km2+(mn+m2) log(m+n)) time.

We would like to mention that the algorithm pre-
sented in this paper also work with little modification
and without increasing the running time for minimizing
the sum of the tower-lengths for k watchtowers.
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