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Universal convex covering problems under affine dihedral group actions∗

Mook Kwon Jung† Sang Duk Yoon‡ Hee-Kap Ahn§ Takeshi Tokuyama¶

Abstract

We consider the smallest-area universal convex Hk-
covering of a set of planar objects, which covers every
object in the set allowing the group action of the affine
dihedral group Hk = T ⋊Dk generated by the transla-
tion T and the dihedral group Dk. The dihedral group
Dk is the group of symmetries of a regular polygon gen-
erated by the discrete rotation group Zk and a reflection.
We first classify the smallest-area convex Hk-coverings
of the set of all unit segments. Then we show that a
suitably positioned equilateral triangle of height 1 is a
universal convex H1-covering of the set Sc of all closed
curves of length 2. We show that no proper closed sub-
set of the covering is a H1-covering and the covering is a
smallest-area triangle H1-covering of Sc. We conjecture
that it is the smallest-area convexH1-covering of Sc. We
also show that a suitably positioned equilateral triangle
△β of height 0.966 is a universal convex H2-covering of
Sc. Finally, we give a universal convex H3-covering of
Sc whose area is strictly smaller than that of △β .

1 Introduction

Given a (possibly infinite) set S of planar objects and
a group G of geometric transformations, a universal G-
covering K of S is a region such that every object in
S can be contained in K by transforming the object
with a suitable transformation g ∈ G. Equivalently,
every object of S is contained in g−1K for a suitable
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transformation g ∈ G. That is,

∀γ ∈ S, ∃g ∈ G such that γ ⊆ g−1K.

A G-covering K of S is minimal if no proper closed
subset of K is a G-covering of S. We denote the
group of planar translations by T and that of pla-
nar translations and rotations by TR. Mathematically,
TR = T⋊R is the semidirect product of T and the rota-
tion group (i.e., the two-dimensional special orthogonal
group) R = SO(2,R). We denote O for the orthogonal
group O(2,R), which is generated by the rotation group
R and a reflection (say, with respect to the x-axis). Our
groupG is a subgroup of TO = T⋊O, which is the group
generated by T and O. The group TO contains every
affine linear transformation for which the shapes of ge-
ometric objects are invariant. For simplicity, we often
call a universal G-covering a G-covering, or a covering
if G is known from the context.

The problem of finding a smallest-area covering is a
classical problem in mathematics. In the literature, the
cases where G = T or G = TR have been widely stud-
ied.

The universal covering problem has attracted many
mathematicians. Henri Lebesgue (in his letter to J. Pál
in 1914) proposed a problem to find the smallest-area
convex TR-covering of all objects of unit diameter (see
[7, 4, 11] for its history). Soichi Kakeya considered in
1917 the T -covering of the set Sseg of all unit line seg-
ments (called needles) [15]. Precisely, his formulation is
to find the smallest-area region in which a unit-length
needle can be turned round, but it is equivalent to the
T -covering problem if the covering is convex [3]. Fuji-
wara conjectured that the equilateral triangle of height
1 is the smallest-area convex T -covering of Sseg. The
conjecture was affirmatively solved by Pál in 1920 [21].
For the nonconvex variant of the Kakeya problem, Besi-
covitch [5] gave a construction such that the area can
be arbitrarily small, and its variants are widely stud-
ied with strong influence on several fields of mathemat-
ics [9, 24].

Generalizing Pál’s result, for any set of n segments,
there is a triangle to be a smallest-area convex T -
covering of the set, and the triangle can be computed
efficiently in O(n log n) time [1]. It is further conjec-
tured that the smallest-area convex TR-covering of a
family of triangles is a triangle, which is shown to be
true for some families [23].



35th Canadian Conference on Computational Geometry, 2023

The equilateral triangle of height 1 is the smallest-
area convex T -covering of the set of all curves of unit
length, as well as the unit line segments. In contrast
to it, the problem of finding the smallest-area convex
TR-covering of the set of all curves of unit length is
notoriously difficult. The problem was given by Leo
Moser as an open problem in 1966 [17], and it is still
unsolved. The best lower bound of the smallest area is
0.21946 [27]. For the best upper bound, Wetzel infor-
mally conjectured (formally published in [28]) in 1970
that the 30◦ circular fan of unit radius, which has an
area π/12 ≈ 0.2618, is a convex TR-covering of all
unit-length curves, and it was proved by Panraksa and
Wichiramala [22]. Recently, the upper bound was im-
proved to 0.260437 [20], but there still remains a sub-
stantial gap between the lower and upper bounds.

This problem is known as Moser’s worm problem, and
it has many variants. The history of progress on the
topic can be found in an article [18] by William Moser
(Leo’s younger brother), in Chapter D18 in [8], and in
Chapter 11.4 in [7]. It is interesting to find a new variant
of Moser’s worm problem with a clean mathematical
solution.

Let us consider the set Sc of all closed curves of length
2. Here, we follow the tradition of previous works on this
problem that deals with closed curves of length 2 instead
of length 1, since a unit line segment can be considered
as a degenerate convex closed curve of length 2. The
problem to find a small-area convex covering of Sc is
known to be an interesting but hard variant of Moser’s
worm problem, and it remains unsolved for T and TR
despite of substantial efforts in the literature [10, 28, 25,
8, 7]. Wichiramala [29] showed that a hexagon obtained
by clipping two corners of a rectangle is a convex TR-
covering of Sc, which has area slightly less than 0.441.
It is also shown that any convex TR-covering of Sc has
area at least 0.39 [12], which has been recently improved
to 0.4 [13] with help of computer programs. For convex
T -coverings, the smallest area is known to be between
0.620 and 0.657 [7].

There are some works on restricted shapes of cov-
ering. Especially, if we consider triangular coverings,
Wetzel [25, 26] gave a complete description, and it is
shown that an acute triangle with side lengths a, b, c
and area X becomes a T -covering (resp. TR-covering)

of Sc if and only if 2 ≤ 8X2

abc (resp. 2 ≤ 2πX
a+b+c ). As

a consequence, the equilateral triangle of side length

4/3 (resp. 2
√
3

π ) is the smallest triangular T -covering
(resp. TR-covering) of Sc. Unfortunately, their areas
are larger than those of the known smallest-area convex
coverings.

Finite subgroups of the rotation group R = SO(2,R)
are cyclic groups Zk = {e2iπ

√
−1/k | 0 ≤ i ≤ k − 1} for

k = 1, 2, . . . , where eθ
√
−1 means the rotation of angle

θ. The group generated by T and Zk is denoted by

Gk = T ⋊ Zk.
Recently, the convex coverings under the action of the

group Gk was investigated by Jung et al. [14]. They
showed that the smallest-area convex G2-covering of
Sc is the equilateral triangle of height 1, whose area

is
√
3
3 ≈ 0.577. They also showed that the equilateral

triangle with height β = cos(π/12) ≈ 0.966 is a con-

vex G4-covering of Sc. Its area is 2
√
3+3
12 ≈ 0.538675,

and it is conjectured to be the smallest-area convex G4-
covering. If the above conjecture is true, it is a curi-
ous phenomenon that the discrete rotations in G2 and
G4 make the shape of the smallest-area convex covering
of Sc simple and symmetric compared to the currently
known small-area convex T -coverings and TR-coverings.
Among the convex G3-coverings of Sc known so far,

the smallest one has area 0.568 [14], and its shape is not
a triangle.

There is another type of discrete groups of linear
transformations from Zk for which the shapes of geo-
metric objects are invariant. They are dihedral groups
Dk generated by the discrete rotation group Zk and the
reflection with respect to the x-axis. They have order
2k. As groups, D1 ≃ Z2, D2 ≃ Z2 × Z2, and D3 ≃ S3,
which is the symmetric group of degree 3. The dihe-
dral group D3 is also called the A1-Weyl group as a
reflection group. Therefore, it is natural to consider the
group Hk = T ⋊Dk generated by the translation group
T and the dihedral group Dk, which we call an affine
dihedral group. Note that Hk is a subgroup of TO, but
not a subgroup of TR.

Our results are as follows.

1. The smallest-area convex Hk-covering of the set
Sseg of all unit segments is determined for each k.

2. The equilateral triangle of height 1 is an H1-
covering of the set Sc of all closed curves of length
2 if and only if it is located so that one of the edges
is parallel to the x-axis.

3. The equilateral triangle given above is a minimal
convex H1-covering of Sc. It is a smallest-area tri-
angle H1-covering of Sc.

4. The equilateral triangle of height β = cos(π/12) is
a minimal convex H2-covering of Sc if it is located
such that one of its sides has orientation π/4.

5. The trapezoid obtained by clipping the top corner
of the equilateral triangle of height 1 with base par-
allel to the x-axis is a convex H3-covering of Sc.
The area of the covering is strictly smaller than that
of the equilateral triangle of height β = cos(π/12).

We use elaborate but quite elementary geometric meth-
ods to show the results.

Here we introduce the notation and preliminaries.
The orientation of a line is the angle swept from the
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x-axis in a counterclockwise direction to the line, and
it is thus in [0, π). The orientation of a segment is the
orientation of the line containing the segment. For two
points X and Y , we use ℓXY to denote the line through
X and Y . For a compact set U in the plane, we use |U |
to denote the area of U . If U is a line segment, then |U |
denotes the length of U .

The missing proofs of lemmas and corollaries can be
found in the full version.

2 Universal convex coverings of line segments

Since we only consider convex coverings, we say covering
for a convex covering from now on unless specifically
noticed. We recall a result by Ahn et al. [1].

Theorem 1 ([1]) For any set S of line segments, there
exists a triangle that is a smallest-area convex T -
covering of S. If S is a finite set and |S| = n, such
a triangle can be computed in O(n log n) time.

The G-orbit of a segment s in S is the set of segments
in S to which s can be moved by the elements of a group
G. We derive the following corollary from Theorem 1:

Corollary 2 For any set S of line segments, there is a
triangle that is the smallest-area convex Hk-covering.

The orbit structure of the Dk-action on Sseg is not
uniform; for example, each of the horizontal and verti-
cal line segments is invariant under the D2-action and
forms a single-element orbit while other orbits have two
segments. This contrasts to the Zk-action, for which
the orbit structure is uniform. Consequently, any ro-
tated copy of a Gk-covering of Sseg is also a Gk-covering
of Sseg, but there are cases where a rotated copy of an
Hk-covering of Sseg is not an Hk-covering of Sseg.

Theorem 3 If k is odd, the smallest area of Hk-
coverings of Sseg is

1
2 sin

π
2k , and it is attained by any tri-

angle △XY Z with horizontal bottom side XY of length

1 and height sin π
2k such that π

2 ≤ ∠X ≤ (2k−1)π
2k . If

k is even, the smallest area of Hk-coverings of Sseg is
1
2 sin

π
k , and it is attained by any triangle △XY Z with

horizontal bottom side XY of length 1 and height sin π
k

such that π
2 ≤ ∠X ≤ (k−1)π

k .

Proof. The set of orientations of segments in Sseg cor-
responds to the angle interval [0, π). First, consider the
case where k is odd. Each orbit of Zk action has ex-
actly k elements. Each of the horizontal and vertical
segments has a single orbit in the orbit structure of the
action of the reflection with respect to the x-axis while
the other segments has 2 orbits in the same orbit struc-
ture. The orbit structure of Dk is given by the above
combinations, and thus each orbit has at most 2k ele-
ments.

Let P be an Hk-covering of Sseg. For any segment s
in Sseg, at least one segment in the Dk-orbit of s must
be contained in P by translation. Let Y be the set of
unit segments that can be contained in P by translation.
Consider the smallest angle interval I such that for each
segment of orientation θ in Y , θ ∈ I or θ + π ∈ I.
Observe that I has length at least π

2k . If the length
of I is smaller than π

2k , the set of orientations of the
segments in Y under Hk-action is a proper subset of
[0, π) since the Dk-orbit of a segment s′ of Y has at
most 2k elements. This contradicts that P is an Hk-
covering of Sseg. So there are two segments in Y such
that their intersection angle θ̄ (the one not larger than
π
2 ) is not smaller than π

2k . The convex hull P ′ of the
two segments has area |P ′| = 1

2 sin θ̄ ≥ 1
2 sin

π
2k , and

|P | ≥ |P ′|. Thus, the smallest area of Hk-coverings is
at least 1

2 sin
π
2k .

If k is even, each orbit of Zk action has exactly k
2 ele-

ments. Thus, each orbit of Dk has at most k elements.
The rest is analogous to the odd k case, and the smallest
area of Hk-coverings is at least

1
2 sin

π
k .

Observe that the triangles given in the theorem are
coverings with areas 1

2 sin
π
2k for odd k and 1

2 sin
π
k for

even k. □

The triangles obtained by acting elements h ∈ Hk

and g ∈ G2 on the triangles given in Theorem 3 are
also Hk-coverings, since a line segment is invariant with
respect to the action of G2 and the covering condition
is invariant with respect to the action of Hk.
Let us compare Theorem 3 with the Gk-coverings of

Sseg given in [14]. If k ≥ 2, the smallest area of Hk-
coverings is the same as that of the smallest area of G2k-
coverings. The smallest area of H1-coverings is

1
2 , which

is the same as the smallest area of G4-coverings. In
contrast, the smallest-areaG2-covering (that is the same
as the smallest-area T -covering) of Sseg is the equilateral
triangle of area 1√

3
.

3 Universal convex H1-coverings of Sc

In this section, we consider H1-coverings of the set Sc

of all closed curves of length 2. First, we recall known
results mentioned in the introduction.

3.1 The smallest-area covering and related results

Theorem 4 (Pal’s theorem) The equilateral triangle
of height 1 is the smallest-area (convex) T -covering of
the set of all unit line segments.

Corollary 5 The area of a G2-covering of Sc is at least
1/
√
3.

Proof. Observe that all unit line segments are in Sc,
and line segments are stable under the action of rotation
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by π. Thus, any convex G2-covering of Sc must be a
T -covering of all unit line segments, and the corollary
follows from Theorem 4 (Pal’s theorem). □

It is known that the above lower bound is tight.

Theorem 6 (Jung et al. [14]) The equilateral trian-
gle of height 1 is the smallest-area G2-covering of Sc.

Lemma 7 Suppose that a region P is symmetric with
respect to the y-axis. Then the following holds.

• For an odd k, P is an Hk-covering of Sc if and only
if it is a G2k-covering of Sc.

• For an even k, P is an Hk-covering of Sc if and
only if it is a Gk-covering of Sc.

Proof. Let h be the reflection with respect to the x-
axis, and let g be the rotation of angle π about the
origin. From the assumption that P is symmetric with
respect to the y-axis, h · P is a translation of g · P . If
k is even, Gk contains g. Hence the Hk-orbit of P is
the same as the Gk-orbit of P , and we have the second
statement. If k is odd, the group generated by Gk and
g is G2k, and we have the first statement. □

3.2 H1-coverings of Sc

Let △1 be an equilateral triangle of height 1 whose bot-
tom side is horizontal.

Theorem 8 The equilateral triangle △1 is an H1-
covering of Sc. Moreover, it is the smallest-area H1-
covering among all H1-coverings of Sc that are convex
and symmetric to the y-axis.

Proof. The first statement follows immediately from
Theorem 6 and Lemma 7. Consider a H1-covering P
that is convex and symmetric with respect to the y-
axis. By Lemma 7, P is G2-covering. By Theorem 6,
|△1| ≤ |P |. Thus, the second statement also holds. □

Corollary 9 Any closed curve of length 2 that is sym-
metric with respect to a line of orientation 0, π/3 or
2π/3 is contained in △1 by translation.

This corollary complements the fact that any
centrally-symmetric closed curve of length 2 can be con-
tained in △1 by translation [14]. However, △1 is not the
smallest-area T -covering of the set of the closed curves
of length 2 that are symmetric about the x-axis, since
a square with a unit length horizontal diagonal is a T -
covering of the set. The area of the square is 1

2 , and thus
smaller than that of △1. Thus, the H1-covering prob-
lem and the T -covering problem of D1-invariant objects
have different solutions.

Theorem 10 Let TL be an equilateral triangle of
perimeter 2 such that it has a vertical side and its oppo-
site corner lies to the right. Let TR be a copy of TL ro-
tated by π. The equilateral triangle △1 and its reflected
image about the x-axis are the only convex H1-coverings
of TL and TR among the rotated copies of △1 about the
origin.

△1

TL TR

TL TR TL TR

(a) (b) (c)

Figure 1: (a) Translates of TL and TR that are contained
in △1. (b) No translate of TR can be contained in a
rotated copy of △1 by θ with 0 < θ < π/3. (c) No
translate of TL can be contained in a rotated copy of
△1 by θ with −π/3 < θ < 0.

Proof. Observe that there are translates of TL and TR

that are contained in △1. See Figure 1 (a). Observe
that both TL and TR are symmetric with respect to a
horizontal line. If a rotated copy △θ of △1 by θ is a H1-
covering of TL and TR, there are translates of TL and TR

that are contained in △θ. Observe that no translate of
TR is contained in△θ with 0 < θ < π/3 and no translate
of TL is contained in △θ with −π/3 < θ < 0, as shown
in Figure 1 (b) and (c). △1 is invariant under rotation
by 2π/3. The rotation by π/3 of △1 is equivalent to
g·△1, where g is the reflection with respect to the x-axis.
Thus, △1 and g · △1 are the only convex H1-coverings
of TL and TR among the rotated copies of △1. □

3.3 The minimality of the H1-covering △1

One may wonder whether we may remove some part
of △1 to obtain a smaller H1-covering of Sc. In this
section, we prove the minimality of the H1-covering △1.

Theorem 11 The equilateral triangle △1 is a minimal
convex H1-covering of Sc.

Proof. Assume to the contrary that there is a proper
subset T of △1 that is a convex H1-covering of Sc. Since
△1 is the convex hull of the corners of △1, T must be
obtained by clipping some portions around some corners
of △1. Since a vertical unit segment must be contained
in T , no portion around the top corner of △1 can be cut
off.

Let In be an isosceles triangle with perimeter 2 whose
legs are of 1 − 1/3n each, base is parallel to x-axis,
and apex is the top corner of In. Let I ′n be a copy of
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In

I ′n

Īn
T

△1

Figure 2: No proper subset T of △1 is a convex H1-
covering of Sc. The isosceles triangle In, a rotated copy
I ′n of In by π/3, and a reflected copy Īn of I ′n along the
x-axis.

In rotated by π/3. Observe that no translate of I ′n is
contained in △1 for any positive integer n. See Figure 2.
Since T is a proper subset of △1, no translate of I ′n
is contained in T for any positive integer n. Thus, a
reflected copy of I ′n along the x-axis is contained in T
under translation for every n.

Let Īn be the reflection copy of I ′n such that Īn is
contained in T . Since T is compact, there is a subse-
quence {Īni} that converges to a unit line segment with
orientation π/6 contained in T . Observe that △1 con-
tains a unit line segment with orientation π/6 only when
the left endpoint of the segment lies at the bottom-left
corner of △1. Thus, no portion around the bottom-
left corner of △1 can be cut off. Similarly, no portion
around the bottom-right corner of △1 can be cut off.
Therefore, we conclude that that T is △1, contradicting
that T is a proper subset of △1. Thus, △1 is a minimal
H1-covering of Sc. □

3.4 The smallest area triangle H1-covering of Sc

Now we show that △1 has the smallest area among all
triangle H1-coverings of Sc. The following two lemmas
describe geometric properties of a triangle that circum-
scribes a convex polygon P .

Lemma 12 ([16]) If a triangle T has a local minimum
in area among all triangles enclosing a convex polygon
P , the midpoint of each side of T touches P .

Following [19], we say that a side s of a triangle is
flush with an edge e of P if e ⊆ s. Also, we say that a
circumscribing triangle △ is P -anchored if a side of △
is flush with an edge of P and the other two sides of △
touch vertices of P at their midpoints.

Lemma 13 (Lemma 1 of [19]) For any P -anchored
triangle △, there always exists some P -anchored trian-
gle △′ such that |△| = |△′|, △ and △′ share one side,
and at least two sides of △′ are flush with edges of P .

Recall that TL given in Theorem 10 is an equilateral
triangle of perimeter 2 such that it has a vertical side
and its opposite corner lies to the right and TR is a copy
of TL rotated by π.

Lemma 14 Let Q be the convex hull of TL and a trans-
lated copy of TR. Then |Q| ≥ |TL|+ |TR|.

The following lemma can be shown by Lemmas 12, 13,
and 14.

Lemma 15 The equilateral triangle △1 is the smallest
triangle T -covering of TL and TR.

Theorem 16 The equilateral triangle △1 is the
smallest-area triangle H1-covering of Sc.

Proof. Let △ be a smallest-area triangle H1-covering
of Sc. Since △ is H1-covering, it is a covering of TL

and TR under translation. By Lemma 15, △1 is the
smallest-area triangle H1-covering of Sc. □

A major open problem is whether △1 is a smallest-
area H1-covering of Sc. As Theorem 6 says, △1 is the
smallest-area G2-covering of Sc, and it is because △1 is
the smallest-area G2-covering of Sseg. However, as we
have seen in Theorem 3, the smallest-area H1-covering
of Sseg is smaller, and has area 1/2. This is because
a line segment (located so that its midpoint is at the
origin) is stable under the rotation by π, but not stable
under the reflection with respect to the x-axis unless it
is horizontal or vertical.

4 Universal convex H2-coverings of Sc

The dihedral group D2 is generated by the reflection ρ
with respect to the x-axis and the π-rotation g. Note
that gρ is the reflection with respect to the y-axis.
The following result was given by Jung et al. [14]:

Theorem 17 An equilateral triangle of height β =
cos(π/12) ≈ 0.966 is a G4-covering of Sc.

1
1

(a) (b)

Figure 3: (a) An equilateral triangle △β of height β
containing horizontal and vertical unit line segments.
(b) The triangle △β and three triangles forming the
D2-orbit of △β .

Now, we consider△β that is the equilateral triangle of
height β located such that one of its sides has orientation
π/4. Then, we have the following:



35th Canadian Conference on Computational Geometry, 2023

Theorem 18 The equilateral triangle △β is an H2-
covering of Sc. Moreover, it is minimal.

Proof. Consider the D2-orbit of △β . Then, as ob-
served in Figure 3, they are exactly the same as the ro-
tated copies of △β with kπ/2-rotations for k = 0, 1, 2, 3.
Thus, it follows from Theorem 17 that △β is an H2-
covering.

Consider the set A of unit length segments (regarded
as degenerate closed curves of length 2) that are con-
tained in △β . It is observed that A′ = A \ B has at
most one element of each D2-orbit of Sseg, where B
is the set of six segments with orientations kπ/6 for
k = 0, 1, . . . , 5. Thus, each segment in A′ must be con-
tained in any H2-covering Q ⊆ △β under translation.
By Theorem 1, there is a smallest-area T -covering of A′

that is a triangle, and the algorithm given in [1] shows
that △β is the triangle. Thus, Q = △β , and hence △β

is minimal. □

We say that an object is θ-orthogonal symmetric if
it has a pair of symmetry axes with orientations θ and
θ + π/2.

Corollary 19 Any curve in Sc that is θ-orthogonal
symmetric for either θ = 0, π/3, or 2π/3 can be con-
tained in △β by translation. In particular, any rectangle
of perimeter 2 that has an edge with orientation either
0, π/3, or 2π/3 can be contained in △β by translation.

Note that △1 is the smallest-area T -covering of the
family of all rotated rectangles of perimeter 2 [14].

5 Universal convex H3-coverings of Sc

1

2
3 Γ3

A B

CD

Figure 4: Construction of a convex H3-covering Γ3 of
Sc. It is the trapezoid obtained from △1 after clipping
a top part (an equilateral triangle) of height 1/3.

Let Γ3 be the trapezoid obtained from △1 after clip-
ping a top part (an equilateral triangle) of height 1/3.
See Figure 4. Let A,B,C,D be the corners of Γ3 in
counterclockwise order, with A being the bottom-left
corner. We show that Γ3 is a convex H3-covering of Sc.
A slab is the region bounded by two parallel lines in

the plane, and its width is the distance between the

lines. Let Lθ denote a slab of orientation θ, and let
w(Lθ) be the width of Lθ.

Lemma 20 For a closed curve β, let Lθ be the
minimum-width slab of orientation θ that contains β.
The length of β is at least w(L0)+w(Lπ/3)+w(L2π/3).

By Lemma 20, we have the following result.

Theorem 21 The trapezoid Γ3 is a convex H3-covering
of Sc.

The area of Γ3 is strictly smaller than that of the equi-
lateral triangle of height β = cos(π/12).

6 Conclusion

This research is about how the mirror (i.e., reflection)
effects on Moser’s worm problems. Compared to the
discrete rotation case given in [14], the positioning of the
covering matters if we introduce the reflection, which
requires delicate mathematical handling.

The research status of Moser’s worm problems on Sc

for T and TR remains rather static, and it is awkward
to conjecture that the known small-area coverings are
the optimal ones. In contrast to it, if we consider the
affine dihedral groups such as H1 and H2, we can give
clear conjectures that suitable equilateral triangles are
the smallest-area coverings. The authors think they are
mathematically clean and curious conjectures, and hope
novel mathematical tools will be developed in the course
of challenging to prove or disprove them.

Finally, although the Hk-coverings for k ≥ 4 of Sseg

have been classified, those for Sc have not been investi-
gated, and it would be curious to find a unified approach
to study them.
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