CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

Approximating Convex Polygons by Histogons*

Jaehoon Chung' Sang Won Bae?

Abstract

We study the problem of finding the largest inscribed
histogon and the smallest circumscribed histogon for a
convex polygon. A histogon is an axis-aligned recti-
linear polygon such that every horizontal edge has an
integer length. Depending on whether the horizontal
width of a histogon is predetermined or not, we con-
sider four different versions of the problem and present
exact algorithms.

1 Introduction

Motivated by optimization problems in shape analysis,
classification, and simplification [I} 2], we consider two
optimization problems of approximating a convex poly-
gon P, one by a largest inscribed histogon in P, and the
other by a smallest circumscribing histogon.

A histogon is an axis-aligned rectilinear polygon such
that every horizontal edge has an integer length. We
call a histogon of width 1 a wnit histogon and histogon
of width k a k-histogon. Thus, a unit histogon is simply
an axis-aligned rectangle of horizontal width 1, and its
height is the length of the vertical sides which is a posi-
tive real number. A k-histogon H for a positive integer
k can be described by k interior-disjoint unit histogons
whose union is H. See Figure [I] for an illustration.

In the inscribed histogon problem, we compute a his-
togon with maximum area that can be inscribed in P.

*Work by H.-K. Ahn and J. Chung was supported by the In-
stitute of Information & communications Technology Planning &
Evaluation(IITP) grant funded by the Korea government(MSIT)
(No. 2017-0-00905, Software Star Lab (Optimal Data Structure
and Algorithmic Applications in Dynamic Geometric Environ-
ment)) and (No. 2019-0-01906, Artificial Intelligence Graduate
School Program(POSTECH)). Work by S. D. Yoon was supported
by “Cooperative Research Program for Agriculture Science &
Technology Development (Project No. PJ015269032022)” Rural
Development Administration, Republic of Korea.

fDepartment of Computer Science and Engineering, Po-
hang University of Science and Technology, Pohang, Korea.
sk7755@postech.ac.kr

fDivision of Computer Science and Engineering, Kyonggi Uni-
versity, Suwon, Korea. swbae@kgu.ac.kr

$Division of Computer Engineering, Hankuk University of For-
eign Studies, Seoul, Korea. cssin@hufs.ac.kr

IDepartment of Service and Design Engineer-
ing, SungShin ~ Women’s University, Seoul, Korea.
sangduk.yoon@sungshin.ac.kr

I Graduate School of Artificial Intelligence, Department of
Computer Science and Engineering, Pohang University of Science
and Technology, Pohang, Korea. heekap@postech.ac.kr

Chan-Su Shin$

Sang Duk Yoon? Hee-Kap Ahnl

(a)

Figure 1: Histogons. (a) The largest inscribed unit histogon
of P. (b) The largest inscribed histogon with width 3 of P.
(c) The largest inscribed histogon of P. (d) The smallest
circumscribed histogon of P

(b)

We call such a histogon a largest inscribed histogon of
P. Depending on whether the horizontal width of a his-
togon is predetermined (1 or a positive integer k) or not,
we consider three versions of the problem.

In the circumscribed histogon problem, we compute a
histogon with minimum area that can be circumscribed
to P. We call such a histogon a smallest circumscribed
histogon of P.

We call a copy of a histogon rotated by 6 € [0,)
in counterclockwise direction a histogon of orientation
0. Our results can be applied to inscribed and circum-
scribed problems for histogons of orientation 6 with the
same time and space.

Approximation of shapes by histogons found its ap-
plications in several topics in calculus, most notably in
Riemann sums and optimization. For a function graph
(or a curve), the area under the graph can be approxi-
mated by a histogon: an inscribed histogon is an under-
approximation of the area, called a lower sum, and a
circumscribed histogon is an over-approximation of the
area, called an upper sum. Many optimization problems
are concerned with the largest inscribed figure and the
smallest circumscribed figure of a shape. They are also
closely related to real-world cost-optimization problems
such as painting a piece using a spray gun, etching VLSI
masks by electron beams with a fixed minimum width,
and inspection.

Related Work. Extensive research has been done in
past decades in computational geometry for inscribing
and circumscribing polygons, and most of which handle
relatively elementary shapes such as triangles, rectan-
gles or parallelograms in a convex or a simple polygon.
Alt et al. [3] gave an O(logn)-time algorithm for find-
ing a maximum-area axis-aligned rectangle that can be
inscribed in a convex m-gon. Daniels et al. [7] gave an

34" Canadian Conference on Computational Geometry, 2022

O(n log? n)-time algorithm for finding a maximum-area
axis-aligned rectangle in a simple polygon with n ver-
tices, possibly with holes. The running time was im-
proved to O(nlogn) by Boland et al. [4].

DePano et al. [§] gave an O(n?)-time algorithm for
finding a maximum-area equilateral triangle and square
that can be inscribed in a convex n-gon and an O(n?)-
time algorithm for finding a maximum-area equilateral
triangle that can be inscribed in a simple polygon with n
vertices. Cabello et al. [5] first suggested O(n?)-time ex-
act algorithm for finding maximum-area or maximum-
perimeter rectangles in a convex n-gon. Jin et al. [12]
designed an O(n?)-time algorithm for computing all the
parallelograms with maximum area in a convex n-gon.
Choi et al. [6] gave an O(n?logn)-time algorithm for
finding maximum-area rectangles in a simple polygon,
possibly with holes. Lee et al. [I4] studied maximum-
area triangles with various restrictions in a convex or a
simple polygon, possibly with holes.

Using the observation due to Freeman and
Sharpia [I0], Toussaint [16] gave an O(n)-time al-
gorithm for finding a minimum-area rectangle enclosing
a convex n-gon. The algorithm also works for finding a
minimum-perimeter rectangle enclosing a convex poly-
gon. O’Rourke et al. [I5] gave an O(n)-time algorithm
for finding a minimum-area triangle enclosing a convex
n-gon.

Our Results. Our main results are efficient algo-
rithms for computing optimal histogons (largest in-
scribed and smallest circumscribed histogons) for a con-
vex polygon P with n vertices and all our algorithms
use O(n) space. We assume that the vertices of P are
stored in an array in counterclockwise order along the
boundary of P.

For the problem of inscribing a largest histogon in
a convex n-gon, we present an O(logn)-time algorithm
for a largest unit histogon, an O(min{n, klog® 2 })-time
algorithm for a largest histogon of width k for a fixed
k > 1, and an O(min{n, wlog? o })-time algorithm for
a largest histogon. The symbol w denotes the width of
a largest inscribed histogon in P, so the last algorithm
is output-sensitive.

For the problem of circumscribing a smallest histogon
of a fixed orientation for a convex m-gon, we present an
O(min{n, Wlog ¢ })-time algorithm. The symbol W
denotes the (horizontal) width of P, so our algorithm is
output-sensitive.

Sketch of Our Results. For the problem of inscrib-
ing a largest unit histogon, we define a function f that
maps t € R into the height of the largest inscribed unit
histogon of P with the left side at * = t. We show
that f is a concave, piecewise linear function, so we can
perform a binary search to find a maximum of f, which

corresponds to a largest unit histogon inscribed in P.

To find a largest k-histogon inscribed in P with k > 1,
we present a characterization for the existence of k-
histogon inscribed in P. For a k-histogon with the left-
most vertical side at x = ¢, we define a function F(t)
by the height of the k-histogon and show that F' is a
concave, piecewise linear function. We find a closed in-
terval containing the x = t* which maximizes F' and
apply binary search to find ¢* in the restricted domain.
We present two algorithms for finding ¢*, one using O(n)
time which is optimal for k& = Q(n) (Section and
the other using O(klog? %) time for k& = O(n) (Sec-
tion [3.2.2]). When there is no restriction on the width
of the histogon, we show that a largest inscribed his-
togon can be computed by invoking the algorithm for
fixed width a constant number of times. (Section [3.3).

For the problem of circumscribing a smallest histogon,
we show that the smallest circumscribed histogon H
has width [WW]. Moreover, either the leftmost vertical
side of H contacts the leftmost vertex or the rightmost
vertical side of H contacts the rightmost vertex of P.
Thus, we compute histogons for two cases, and take the
smaller one. See Section [4l

2 Preliminaries

Let P be a convex polygon with n vertices, stored in an
array in counterclockwise order along the boundary of
P. We denote by 0P the boundary of P. For a point
p € R? let z(p) and y(p) be the z-coordinate and the
y-coordinate of p, respectively.

For a histogon H, let w(H) be the horizontal width
of H and let |H| denote the area of H. We call a line
segment connecting two distinct boundary points of P
a chord of P.

3 Inscribed histogons

We compute a largest inscribed histogon in a convex
polygon P with n vertices for three versions of the prob-
lem: a unit histogon, a histogon of width k& for a given
integer k, and a histogon of any integer width.

3.1 Largest inscribed unit histogon

For ease of discussion, we assume that no two edges of P
are parallel to each other. The case with parallel edges
can be handled with little modification. Observe that
not every convex polygon contains a unit histogon. The
following lemma shows the condition for P to contain a
unit histogon of a positive height.

Lemma 1 The longest horizontal chord in P has length
larger than 1 if and only if there is a unit histogon of a
positive height contained in P.

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

Proof. Assume that the longest horizontal chord in P
has length larger than 1. Let s be a horizontal unit
segment contained in the interior of the longest chord.
Then s can be translated vertically upward or downward
while it is contained in P. Let s’ be such a translated
copy of s. Since P is convex, the convex hull of s and s’
is a unit histogon of a positive height contained in P.

Assume that there is a unit histogon H of a posi-
tive height contained in P. Let s be a horizontal unit
segment contained in H, other than its top and bottom
sides. Since no two edges of P are parallel to each other,
one endpoint of s is in the interior of P. By extending s
until both endpoints of s meet 9P, we get a horizontal
chord of length larger than 1 in P. O

By Lemmall] we can determine the existence of a unit
histogon contained in P from the length of the longest
horizontal chord in P. Since P is convex and the vertices
of P are stored in an array in counterclockwise order
along 0P, we apply binary search to find the longest
horizontal chord in P in O(logn) time.

From now on, we assume that the length of the longest
horizontal chord in P is larger than 1. Let P be the
translate of P by vector (—1,0). Let Q = PN P, which
is a convex polygon. Then there is one-to-one corre-
spondence between any vertical chord at x = t of Q and
the largest unit histogon with left side at x = ¢ inscribed
in P. Moreover, the length of a vertical chord and the
height of its corresponding histogon are the same. Thus,
the height of any largest inscribed unit histogon of P is
the length of a longest vertical chord in Q). See Fig-
ure 2f(a).

Note that P and OP intersect each other at most
twice. If there is a horizontal edge of length larger than
1 in P, one intersection may appear as a horizontal line
segment on the horizontal edge. Then each intersection
corresponds to the horizontal chord of unit length in P
or a horizontal edge of length larger than 1 of P. We
can compute the intersections 9P NAP in O(logn) time
by binary search using the sorted array of vertices of
P. The longest vertical chord in), and the horizontal
chords of unit length of P, can be computed in O(logn)
time by applying binary search on the boundary of @
using the sorted array of vertices of P.

To sum up, we can determine whether a unit histogon
of a positive height inscribed in P exists in O(logn)
time, and if so, we can compute the largest inscribed
unit histogon in the same time.

Theorem 2 Given a convex polygon P with n vertices
stored in an array in order along its boundary, we can
find in O(logn) time the largest unit histogon inscribed
mn P.

(a)

Figure 2: (a) For the translate P of P by vector (—1,0),
PN P is also a convex polygon. (b) @ is 5.2 and w(H) =
|w| —2 = 3. (c) The largest histogon has width larger than
@] —2.

w(@) =w

-

Figure 3: (a) Three unit histogons whose union is not a
3-histogon. (b) Every unit histogon intersects @, and every
two consecutive unit histogons share a portion along their
vertical sides. Their union is a 3-histogon.

3.2 Largest inscribed histogon of a fixed width

Given a positive integer k > 1, we compute a largest
inscribed histogon H of P with w(H) = k. For ¢ € R, let
H(t) denote the largest inscribed k-histogon in P with
the leftmost vertical side at x = ¢, and let H(¢) denote
the largest inscribed unit histogon of P with the left side
at x = t. Then H(t) can be determined by a disjoint
union of k unit histogons H (¢), H(t+1),..., H(t+k—1).

It is possible that there is no k-histogon that can be
inscribed in P even if there are k interior-disjoint unit
histogons inscribed in P. Figure a) shows an exam-
ple with three unit histogons whose union is not a 3-
histogon.

Thus, to guarantee a k-histogon inscribed in P, we
need the following lemma. Let Q be the union of N Q
over all horizontal lines ¢ with [£N Q| > 1. Since Q is a

convex polygon, @ is also a convex polygon.

Lemma 3 Assume that w(Q) # k — 1. Then, w(Q) >
k — 1 if and only if there is a k-histogon that can be
contained in P.

Proof. Assume that w(Q) > k — 1. By letting ¢t =
x(v) + € for the leftmost vertex v of Q and sufficiently
small € > 0 (smaller than w(Q) —k + 1), |t N Q| > 0
for each vertical line ¢; : x =t +1i and |H (¢t +14)| > 0 for
i=0,1,...,k—1. Observe that the union of H(t+1) for
i=0,1,...,k—11is a k-histogon H (¢) if and only if every
two consecutive unit histogons H (¢t +i) and H(t+i+1)

34" Canadian Conference on Computational Geometry, 2022

share a portion (a point or a vertical segment) along
their vertical sides at t =t+i¢+1fori=0,1,...,k—2.
Two consecutive unit histogons H (t+i) and H(t+i+1)
share a portion along their vertical sides if and only if
there is a horizontal line ¢ that intersects both H (¢ + 1)
and H(t+i+1).

Suppose that there is no horizontal line that intersects
both H(t +1i) and H(t + i+ 1). Then, we can find a
horizontal line ¢ such that £; N @Q and ¢; ;1 N Q are on
the opposite sides of ¢/, and the length |¢' N Q| must be
smaller than 1. This contradicts to the definition of Q.
Therefore, the union of H(t + i) for i = 0,1,...,k—1
is a k-histogon contained in P. See Figure b) for an
illustration.

Let H be a k-histogon that is inscribed in P. Then H
can be partitioned into k interior-disjoint unit histogons
H(t + i) of positive heights, each corresponding to a
vertical line ¢; : x =t +ifori=0,1,...,k— 1, where ¢
is the z-coordinate of the leftmost side of H. Since every
two consecutive unit histogons H(t+14) and H(t+i+1)
share a portion (a point or a vertical segment) along
their vertical sides at x = ¢4 1, there is a horizontal line
¢ that intersects both H(t + i) and H(t + i+ 1). Then
|¢ N Q| > 1 which means both ¢; and ¢;,, intersects Q.

Thus w(Q) > k — 1. O

By Lemma |3 we can check whether a k-histogon ex-
ists in P by computing w(Q) using binary search. First,
we compute Q@ = PN P as we do in Section in
O(logn) time. Since the vertices of @ are stored in an
array in order, Q can be computed in O(logn) time by
locating the two horizontal chords of unit length in @
by binary search on the array.

By applying binary search on the array of Q, we can
compute w(Q) in O(logn) time, and decide whether a
k-histogon can be inscribed in P or not by Lemma [3] if
w(Q) >k — 1. If w(Q) = k — 1, we have to check the
existence of H (x(v)+i) in P fori =0,1,...,k—1, where
v is the leftmost vertex of Q. From the convexity of P,
the existence of H(z(v)+i)in P fori =0,1,...,k—1can
be confirmed from the existence of two unit histogons
H(x(v)) and H(z(v) +k — 1) in P, which can be done
in O(logn) time by binary search on the array of Q.

Let I be the set of z-coordinates of all points in @, so
I is equivalent to the projection of @) onto the x-axis.
If a k-histogon H(t) can be inscribed in P, there are k
unit histogons H(t), H(t+1),..., H(t+k—1) inscribed
in P such that any two consecutive unit histogons share
a portion along their vertical sides. This implies that
t,t+1,...,t+ k — 1 must be contained in the interval
1.

We define a function f: R — R such that f(¢) =
|H(t)| for any t € I and f(t) = —oo for any t ¢ I.
Observe that f is a concave function consisting O(n)
linear pieces.

Let F(x) = > gcicp f(x 4 4). If there exists a k-

histogon H (z) inscribed in P, F(z) is the area of H(z).
Otherwise, F'(z) is —oo. Observe that F' is also a con-
cave, piecewise linear function with O(kn) complexity.
Our goal is to maximize the function F(z) over z € R.
Let z* € R be a value at which F' attains the maxi-
mum. If there are more than one such value, we choose
the least one as z*.

Let F” be the left-hand derivative of F. There exists
a real value & € R such that F’ () > 0 and F’ (Z +
1) <0, since F' is a concave function. If we restrict the
domain of F to [#, & + 1), the function consists of O(n)
pieces and we find z* on it.

We present two algorithms for finding z*, one using
O(n) time which is optimal for k = Q(n) (Section [3.2.1]
and one using O(klog? 7) time for & = O(n) (Sec-

tion [3.2.2)).

3.2.1 An O(n)-time algorithm

We present an O(n)-time algorithm for finding x*,
which is optimal for &k = Q(n). Recall that we can
get the interval I in O(logn) time. We compute the
function f that maps t € I to |H(t)| and t ¢ I
to —oo by traversing @ in O(n) time. Assume that
f consists of m + 2 linear pieces, where m = O(n).
ho,hi, ..., hp, huny1 denote the linear functions of these
pieces in the order of their domain. Let h} denote the
derivative of h; and (a;,a;4+1] denote the domain of h;
for + = 0,1,...,m + 1. From the construction of f,
ag = —00, Amy2 = +00, hj = +o0, and h;,, , = —oc.

Lemma 4 We can find & such that F' (%) > 0 and
F' (z+1) <0 in O(n) time using O(n) space.

Proof. Let t; be the smallest integer in (a;,a;11] and
let N; be the number of integers in (a;,a;4+1] for i =
L,2,...,m. Then F'(t;) = >, ;. (R} N;j) + hi, -
(k= X icjer, INj), where r; is the largest integer such
that Zi§j<ri N; < k. Note that r; < r;4; for each
integer i. Then we compute > ,,_, (h} - N;) for all
integers 7 in O(n) time in total. Thus we compute F” (¢;)
for all integers ¢ in O(n) time. We find an index L
such that F’ (tz) > 0 and F” (t14+1) < 0 in O(n) time.
Similarly, we find an index R such that F’ (tg — k) > 0
and F/_(tR.H — k‘) S 0.

Then there exists an integer sy with 0 < s;, < N,
such that F” (t;, + sr) > 0 and F’ (¢t + s + 1) < 0,
and there exists an integer sp with 0 < sgp < Ng such
that F' (tg —k+sg) >0and F' (tr—k+sr+1) <O0.
This means that & =t + s, =tg — k + Sg.

Observe that F” (tL+a) =3 p < g(h}-Nj)—hp-a+
hp - b, where b= a+k — (tg —tr). Since the first term
> r<j<r(P;-N;j) remains the same for varying a, we can
find sy, satisfying F’ (t;,+sz) > 0and F’ (t;+s,+1) <
0 in O(n) time. Then sg = sy +k — (tg — tr). Thus
we compute & such that F/ (Z) >0 and F' (£ +1) <0
in O(n) time. O

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

Then z* = max{z € [&,& + 1) | F_ (z) > 0}. For
each integer ¢ with 1 <4 < m, let k;(x) be a function
k; : [0,1) — Z that maps = € [0,1) to the number of
integers j with 0 < j < k satisfying &+x+j € (a;, a;+1].
Note that k; is a step function having at most three steps
in domain [0,1). Let g;(z) = ki(x) - h} be a function
gi : [0,1) — R for each integer ¢ with 1 < i < m.
Then g; is also a step function with at most three steps
in domain [0,1). For given an integer ¢, functions k;,
R}, and g; can be computed in O(1) time. In a step
function, each step has an interval as its domain and
endpoints of the interval are called breakpoints of the
step function. Then Y, ... gi(z) = F' (& + z) and z*
is a breakpoint of g;’s. For a breakpoint s of g;’s, we can
compute F’ (Z+) in O(m) = O(n) time by computing
gi(s) for each i and taking the sum of them. Since F”
is decreasing, we can find z* in the set of breakpoints
by using the median of the set.

Lemma 5 We can find z* € [Z,2 + 1) in O(n) time
using O(n) space.

Proof. We can construct all g; functions in O(n) time
since each g; can be computed in O(1) time. Let X be
the set of breakpoints in all g;’s. Then |X| = O(n)

We find z* in X iteratively by using the medians of
X. The number of breakpoints of X halves over each it-
eration, and thus the total time spent for computing the
median s and F’ (£+s) is O(n). The median s of X can
be computed by a selection algorithm that takes time
linear to the cardinality of X using Hoare’s selection
algorithm [II]. Note that F' (& +) = > ;e 9i(T)
and g; remains constant in the rest of iterations if X
contains no breakpoint of g;. Let G' be the sum of g;’s
values such that X contains no breakpoint of g;. In
each iteration, we compute the sum of g;(s) if X con-
tains a breakpoint of g;, and compute F” (% + s) from
the sum and G. Then we update X by removing those
breakpoints larger than s if F” (& + s) < 0, and remov-
ing those breakpoints smaller than s if F’ (& 4 s) > 0.
Finally, we update G. This can be done in time linear
to the number of breakpoints in X. We repeat this until
X consists of at most two breakpoints.

Observe that F’ has a positive value at one of the
breakpoints. We return the breakpoint as z*. Since the
size of X halves over each iteration, the total time spent
over all iterations is O(n). Therefore, z* can be found
in O(n) time using O(n) space. O

Combining Lemma [4] and Lemma [5], we have the fol-
lowing theorem.

Theorem 6 Given a convex polygon P with n vertices
given in order along its boundary and an integer k > 1,
we can find the largest inscribed k-histogon H in P in
O(n) time using O(n) space.

3.2.2 An O(klog? %)-time algorithm

We present another algorithm for finding z* in
O(klog? 7) time for k = O(n). From now on, we as-
sume that n > 4k. If n < 4k, we apply the algorithm in
Sectiontaking O(k) time. We partition Q = PNP
into two parts along the line ¢ through the leftmost ver-
tex and the rightmost vertex of). Let QT denote the
upper part and let @~ denote the lower part of it. Ob-
serve that any vertical chord of () can be partitioned
into two pieces by £, one vertical chord of QT and one
vertical chord of Q™.

We group the edges of QT into blocks By, Bs, ..., B,
of size | 7 | consecutively in order from left to right. Sim-
ilarly, we group the edges of @~ to blocks C1,Cy,...,C;
of size |#] consecutively in order from left to right.
Both m and [are O(k). Every block has size | %], ex-
cept that the last blocks, B, and C}, may consist of less
number of edges. For an edge e of P, we say e contains
an z-coordinate t if the vertical line at x = ¢ intersects
e. We say a block B contains an z-coordinate t if B
contains an edge e and e contains an x-coordinate t.

Our algorithm works as follows. It first computes T
that maximizes f(x), and sets D = f’ (Z). It initializes
indices ¢ = 0 and j = 0. Then it searches Z linearly from
Z by updating D value k—1 times as follows. It increases
i by 1 and sets w = Z 4+ ¢ if D > 0, and it increases j
by 1 and sets w =% — j if D < 0. Then it finds blocks
B and Cy that contain w, computes f’ (w) using the
edges containing w, and updates D = D+ f’ (w). After
k —1 iterations, we have D = F’ (Z — j). The algorithm
returns =2 —jif D>0,andz =z —j—1if D <0.

Lemma 7 We can find & such that F' (%) > 0 and
F' (2 +1) <0 in O(klog) time using O(n) space.

Proof. First we compute Z that maximizes f(z) in
O(logn) time using binary search. Since F(x) =
> o<ick f(x 4 1) and f is a concave, piecewise linear
function, we can get a larger k-histogon than H(z) by
decreasing x if £ < x or by increasing z if t +k—1 < Z.
Then Z — k + 1 < 2* < Z. At the end of iterations,
D=F(Z-j). If D>0 F(z-3j) >0 and
F'(z—j+1) <0, thatis 2 =z —j. If D <0,
F'(z—j—1)>0and F' (z—j) <0, thatis & = z—j—1.
Note that the indices s and ¢ of blocks B, and C; con-
taining w = T + ¢ monotonically increase while ¢ in-
creases. The indices s’ and t' of blocks By and Cy
containing w = T — j monotonically decrease while j
increases. Then the step for finding the blocks takes
O(k) time in total, since the number of blocks is O(k).
Moreover, we can find two edges containing w = T + ¢
or w = I — j in the blocks in O(log %) time using binary
search. Thus the time complexity of the algorithm is
O(klog %) time using O(n) space. O

We define a function ¢; : [0,1) — R for each inte-
ger ¢ with 0 <4 < k by ¢;(x) = f.(& + i+ z). Then

34" Canadian Conference on Computational Geometry, 2022

> o<ick ¢i(x) = F’ (& + x). Note that ¢; is a step func-
tion on its domain and the total number of breakpoints
of all g;’s is O(n). Let b* be the largest breakpoint of
q;’s such that » o, , ¢i(b*) = F_ (2 +b*) > 0. Then
x* is &4 b* since z* = max{z € [£,Z+1) | F' (z) > 0}.

Note that each breakpoint is induced by a vertex of
). Consider the sequence of the breakpoints of ¢; in-
duced by the vertices on Q7 from left to right. Let b; ;
denote the j-th breakpoint of g; in the sequence. Sim-
ilarly, in the sequence of the breakpoints of ¢; induced
from the vertices on @~ from left to right, let ¢; ; be
the j-th breakpoint of ¢; in the sequence. Then there
are 2k sequences, two for each ¢;, and there are O(n)
breakpoints in total.

Lemma 8 After O(klog)-time preprocessing, we can
get b; ;j and c; j in O(1) time for any given indices i and
J.

Proof. We show how to get b; ;. We can get ¢; ; sim-
ilarly. Let u;; denote the vertex corresponding to b; ;.
By the definition of ¢;, z(u;;) = & + ¢ + b; ;. Thus,
for given indices ¢ and j, we can get b; ; in O(1) time
if we can get x(u; ;) in O(1) time. We group the ver-
tices of Q7 into blocks of size [%] consecutively in order
from left to right. Let B and B’ be the two leftmost
blocks containing some ¢ € [& + ¢, & + ¢ + 1). Then u; 1
is the leftmost vertex on edges of B and B’ satisfying
x(u;1) € [T+ 4,84+ 11+1). We search for B and B’
for every i linearly in O(k) time. For each ¢, we find
u;,1 using binary search in O(log %) time. Thus, we can
find u;,1 for every ¢; in O(klog %) time. Then we can
get z(u; ;) for j > 1 for each ¢; in O(1) time as the
vertices of @ are stored in an array in order along its
boundary. O

By Lemma [8] we can construct the collection of 2k
sequences implicitly in O(klog %) time such that each
breakpoint can be accessed in constant time. Our goal
is to find the largest breakpoint b* in the collection such
that 3 ;4 ¢i(b") > 0.

Kaplan et al. [I3] gave a selection algorithm for a
row-sorted matrix A with m rows that computes the &
smallest items of A in O(m + k) time. Frederickson et
al. [9] also gave an O(m)-time algorithm for finding the
k-th smallest item of A. We describe an algorithm that
finds b* in the collection of 2k sequences in O(k log? %)
time. Recall that n > 4k. We partition each sequence
of the collection into blocks of size | -|. They are par-
titioned into a number of full blocks, followed possibly
by one block of size less than [;3 |. Then the number
of blocks in the collection is ©(k). We set the last el-
ement in each block as the representative of the block.
We select k smallest representatives among all repre-
sentatives in O(k) time using the selection algorithm by
Kaplan et al. We claim that the k-th smallest repre-
sentative r is an approximated median of the collection.

First, the rank of r in the collection is at least g, since
% < kl45] for n > 4k. Second, the number of blocks
containing a breakpoint less than r is at most 3k — 1
in the collection, since r is the k-th smallest represen-
tative. Then the rank of r in the collection is less than
n—(3k-la]<n—%=1%

We evaluate F (r) =3, ;< ¢i(r). If F/.(r) <0, we
shrink the search range of each sequence of the collection
to the range of the elements smaller than r. If F” () >
0, we shrink the search range of each sequence of the
collection to the range of the elements larger than or
equal to r. The number of breakpoints in the collection
decreases by a constant factor at each iteration.

To evaluate), ;.. ¢i(r), we need to locate the po-
sition of 7 in each sequence of the collection, except the
sequence where r was selected. For each sequence, we
already know the block containing r, and we can find
the position of r in the block using binary search in
O(log %) time. Thus it takes O(klog %) time to com-
pute the positions of r in all sequences in total.

After O(log ;) iterations, the number of remaining
breakpoints in the collection becomes smaller than 4k.
Then we use the algorithm in Section with all el-
ements in the collection to find b* taking O(k) time.

Taken together, there are O(log %) iterations, each of
which takes O(klog %) time. Thus it takes O(klog?)
time using O(n) space to find z* = & + b*.

Theorem 9 Given a convex polygon P with n vertices
stored in an array in order along its boundary and an
integer k = O(n), we can find the largest inscribed k-
histogon H in P in O(klog® %) time using O(n) space.

3.3 Largest inscribed histogon

Now we consider the variation that no restriction is im-
posed on the width of a largest inscribed histogon in P.
We find the largest inscribed histogon H in P.

Recall that @ is the union of /N Q with [{NQ| > 1
for all horizontal lines ¢. Let @w = w(Q). Then the
largest inscribed histogon has width at most |@] + 1 by
Lemma Bl

We now claim that the width of the largest inscribed
histogon in P is either |@w|—1, |@] or |w]+1. Suppose
that the largest inscribed histogon H in P has width
k < |w|—2. Then there are k vertical lines intersecting
@ such that all distance between two consecutive lines
is 1. Since w — k + 1 > 3, the leftmost vertical line is
at distance larger than 1 from the leftmost point of Q
or the rightmost vertical line is at distance larger than
1 from the rightmost point of Q. Thus, we can always
attach a unit histogon with positive height to the left or
right of H and get an inscribed histogon with a larger
area in P. Thus, the largest histogon has width |w] —1,
|@w] or |w]+1. See Figure[2b—c). Once we compute w
in O(logn) time, we can compute the largest histogons

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

(of width |@w]|—1, |@| and |@]+1) using the algorithms
in Section [3.2] and choose the largest one.

In conclusion, we can compute the largest inscribed
histogon of P in O(n) time using O(n) space by Theo-
rem (6| For w = O(n), we can compute it in O(wlog” 2)
time using O(n) space by Theorem [9]

Theorem 10 Given a convex polygon P with n ver-
tices stored in an array in order along its boundary,
we can find the largest inscribed histogon in P in
O(min{n, wlog® Z}) time using O(n) space, where W
denotes the width of the largest inscribed histogon in P.

4 Smallest circumscribed histogon

We consider the problem of covering a convex polygon
P with n vertices by a histogon with smallest area and
present algorithms for computing the smallest circum-
scribed histogon of P.

We denote by H(t) the smallest unit histogon with
the left side at x =t that covers the part of P between
x =tand x = t+ 1. Let [; denote the intersection
between P and the vertical line x = t. Observe that
H(t) is defined if I; or l;;; has a positive length, and
()] = max{la], 1]}

Let H* denote the smallest histogon covering P, and
let z* be the z-coordinate of the leftmost vertical side of
H*. Then H* can be represented by the disjoint union
of w(H*) unit histogons, H(z*), H(x* +1),... H(x* +
w(H*) —1).

We denote by P the Minkowski sum of P and the hor-
izontal segment with endpoints (—1,0) and (0,0). Note
that the length of the longest vertical segment contained
in P at o =t is the same as |H (t)|.

We define a function g : R — R by g(t) = |H(t)]
if H(t) is defined, otherwise g(t) = —oo. Then g is a
concave, piecewise linear function, since P is convex and
g(t) is the length of the longest vertical segment at x = ¢
contained in P.

Lemma 11 Let H* be a smallest histogon covering P.
Then, w(H*) = [W], where W is the (horizontal) width
of P. There is a smallest histogon covering P whose
leftmost vertical side contacts the leftmost vertex of P
or whose rightmost vertical side contacts the rightmost
verter of P.

Proof. Let z; and x, be the x-coordinates of the left-
most vertex and the rightmost vertex of P, respectively.
Any smallest histogon H* covering P with its leftmost
vertical side with © = z* satisfies ; — 1 < z* < 1y
and z, < z* +w(H*) < z, +1. Thus, w(H*) >
[, — 2] = [W] and w(H*) < [W] + 1. Suppose
that w(H*) = [W]+1. We define a function G : I — R
by G(z) = > o<iciwi+1 9(@ +14), where I is a maxi-
mal interval such that g(x + ¢) > 0 for all integers ¢

with 0 < ¢ < [W] 4+ 1. We minimize G(z) subject to
x < x;and z, <z + [W] + 1, which P can be circum-
scribed by the union of H(z), H(z+1),... H(x+[W]).
If G(z) has a minimum, G(z) is minimized at x =
or x =z, — [W] — 1 since G is also concave and piece-
wise linear as g. Thus 2* = z; or 2* =z, — [W] — 1
which means H* touches either the leftmost vertex
or the rightmost vertex of P. Then either H(z*) or
H(z* + [W]) does not intersect P, a contradiction.
Thus, w(H*) = [W] and H* touches either the left-

most vertex or the rightmost vertex of P. O

By Lemmal[I1] w(H*) = [W] and there are only two
candidate locations for H*, one with z* = z; and one
with * = x, — [IW]. To compute their areas, we can
use the method for computing the area of the largest
inscribed histogon in Section [3.3] More precisely, we
show how to compute the area of the smallest circum-
scribed histogon with z* = x;. We construct function g
in O(n) time using the vertices of P stored in an array
in order along its boundary which can be computed in
O(logn) time. For each piece of g, we find in O(1) time
the smallest integer s and the largest integer ¢ such that
x;+s and x;+t are contained in the domain of the piece.
Then we can compute Y, -, g(x;+1) in O(1) time. By
summing the values over all pieces, >3,y 9(21 + 1)
can be computed in O(n) time. If W = O(n), similar
to Lemma |8] we find two edges containing r = x; + 7
for all 0 < ¢ < [W] in O(Wlog) time and com-
pute > oo,y 9(@ + 1) in O(W) time. Among two
candidates for H*, the smaller one is the smallest cir-
cumscribed histogon of P.

Theorem 12 Given a convex polygon P with n ver-
tices stored in an array in order along its boundary,
we can find the smallest circumscribed histogon of P in
O(min{n, O(Wlog #)}) time using O(n) space where
W denotes the width of the smallest circumscribed his-
togon in P.

5 Discussion

We present algorithms for computing the largest in-
scribed histogon and the smallest circumscribed histo-
gon for a convex polygon. The histogons are required
to be axis-aligned. A direction for future work is to
consider a generalization of the problem in which the
histogons can be of arbitrary orientations.

References

[1] H.-K. Ahn, S. W. Bae, O. Cheong, and J. Gudmunds-
son. Aperture-angle and hausdorff-approximation of
convex figures. Discrete € Computational Geometry,
40:414-429, 2008.

34" Canadian Conference on Computational Geometry, 2022

[2] H.-K. Ahn, P. Brass, O. Cheong, H.-S. Na, C.-S. Shin,
and A. Vigneron. Inscribing an axially symmetric poly-
gon and other approximation algorithms for planar con-
vex sets. Computational Geometry, 33:152—164, 2006.

[3] H. Alt, D. Hsu, and J. Snoeyink. Computing the largest
inscribed isothetic rectangle. In Proc. 7th Canad. Conf.
Comput. Geom. (CCCG 1995), pages 6772, 1995.

[4] R. P. Boland and J. Urrutia. Finding the largest
axis aligned rectangle in a polygon in O(nlogn) time.
In Proc. 13th Canad. Conf. Comput. Geom. (CCCG
2001), pages 41-44, 2001.

[5] S. Cabello, O. Cheong, C. Knauer, and L. Schlipf. Find-
ing largest rectangles in convex polygons. Computa-
tional Geometry, 51:67-74, 2016.

[6] Y. Choi, S. Lee, and H.-K. Ahn. Maximum-area and
maximum-perimeter rectangles in polygons. Computa-
tional Geometry, 94:101710, 2021.

[7] K. Daniels, V. Milenkovic, and D. Roth. Finding the
largest area axis-parallel rectangle in a polygon. Com-
putational Geometry, 7(1):125-148, 1997.

[8] A. DePano, Y. Ke, and J. O'Rourke. Finding largest
inscribed equilateral triangles and squares. In Proc.
25th Allerton Conf. Commun. Control Comput., pages
869-878, 1987.

[9] G. N. Frederickson and D. B. Johnson. Generalized
selection and ranking: Sorted matrices. SIAM Journal
on Computing, 13(1):14-30, 1984.

[10] H.Freeman and R. Shapira. Determining the minimum-
area encasing rectangle for an arbitrary closed curve.
Commun. ACM, 18(7):4097413, jul 1975.

[11] C. A. R. Hoare. Algorithm 65: Find. Commun. ACM,
4(7):3217322, jul 1961.

[12] K. Jin and K. Matulef. Finding the maximum area par-
allelogram in a convex polygon. In Proc. 23rd Canad.
Conf. Comput. Geom. (CCCG 2011), 2011.

[13] H. Kaplan, L. Kozma, O. Zamir, and U. Zwick. Selec-
tion from heaps, row-sorted matrices and x+y using soft
heaps. In Proc. 2nd Sympos. Simplicity Algo. (SOSA
2019), pages 5:1-5:21, 2019.

[14] S. Lee, T. Eom, and H.-K. Ahn. Largest triangles in a
polygon. Computational Geometry, 98:101792, 2021.

[15] J. O’Rourke, A. Aggarwal, S. Maddila, and M. Baldwin.
An optimal algorithm for finding minimal enclosing tri-
angles. Journal of Algorithms, 7(2):258-269, 1986.

[16] G. Toussaint. Solving geometric problems with the ro-
tating calipers. In Proceedings of IEEE MELECON’83,
83, 02 2000.

	Introduction
	Preliminaries
	Inscribed histogons
	Largest inscribed unit histogon
	Largest inscribed histogon of a fixed width
	An Lg-time algorithm
	An Lg-time algorithm

	Largest inscribed histogon

	Smallest circumscribed histogon
	Discussion

