
December 30, 2010 14:49 WSPC/Guidelines frechet

Computing the discrete Fréchet distance with imprecise input

Hee-Kap Ahn

Department of Computer Science and Engineering, POSTECH, Pohang, Korea.

heekap@postech.ac.kr

Christian Knauer

Institute of Computer Science, Universität Bayreuth, 95440 Bayreuth, Germany.

christian.knauer@uni-bayreuth.de

Marc Scherfenberg

Institute of Computer Science, Universität Bayreuth, 95440 Bayreuth, Germany.

marc.scherfenberg@uni-bayreuth.de

Lena Schlipf

Institute of Computer Science, Freie Universität Berlin, 14195 Berlin, Germany.

schlipf@mi.fu-berlin.de

Antoine Vigneron

Division of Mathematical and Computer Sciences and Engineering, KAUST, Thuwal, Saudi

Arabia.

antoine.vigneron@kaust.edu.sa

We consider the problem of computing the discrete Fréchet distance between two polyg-
onal curves when their vertices are imprecise. An imprecise point is given by a region

and this point could lie anywhere within this region. By modelling imprecise points as

balls in dimension d, we present an algorithm for this problem that returns in time

2O(d2)m2n2 log2(mn) the Fréchet distance lower bound between two imprecise polygo-
nal curves with n and m vertices, respectively. We give an improved algorithm for the
planar case with running time O(mn log2(mn)+(m2+n2) log(mn)). In the d-dimensional
orthogonal case, where points are modelled as axis-parallel boxes, and we use the L∞
distance, we give an O(dmn log(dmn))-time algorithm.

We also give efficient O(dmn)-time algorithms to approximate the Fréchet distance

upper bound, as well as the smallest possible Fréchet distance lower/upper bound that
can be achieved between two imprecise point sequences when one is allowed to translate

them. These algorithms achieve constant factor approximation ratios in “realistic” set-
tings (such as when the radii of the balls modelling the imprecise points are roughly of
the same size).

1

December 30, 2010 14:49 WSPC/Guidelines frechet

2

1. Introduction

Shape matching is an important ingredient in a wide range of computer applications

such as computer vision, computer–aided design, robotics, medical imaging, and

drug design. In shape matching, we are given two geometric objects and we compute

their distance according to some geometric similarity measure. The Fréchet distance

is a natural distance function for continuous shapes such as curves and surfaces, and

is defined using reparameterizations of the shapes.3,4,5,16

The discrete Fréchet distance is a variant of the Fréchet distance in which we

only consider vertices of polygonal curves. In dimension d, given two polygonal

curves with n and m vertices, respectively, there is a dynamic programming algo-

rithm that computes the discrete Fréchet distance between them in Θ(dmn) time.9

Later, Aronov et al. presented efficient approximation algorithms for computing

the discrete Fréchet distance of two natural classes of curves: κ-bounded curves

and backbone curves.6 They also proposed a pseudo-output-sensitive algorithm for

computing the discrete Fréchet distance exactly.

Most of previous works on the Fréchet distance assume that the input curves

are given precisely. The input curve, however, could be only an approximation;

In many cases, geometric data comes from measurements of continuous real-world

phenomenons, and the measuring devices have finite precision. This impreciseness

of geometric data has been studied lately, and quite a few algorithms that handle

imprecise data have been given for fundamental geometric problems: for example,

computing the Hausdorff distance,12 Voronoi diagrams,17 planar convex hulls,14 and

Delaunay triangulations.11,13

Imprecise data can be modelled in different ways. One possible model, for data

that consists of points, is to assign each point to a region, typically a disk or a

square. In this case, existing algorithms for computing the Fréchet distance could

be too sensitive to the precision of the measurements, and they may return a solution

without providing any guarantee on its correctness or preciseness. One solution to

this problem is to take the impreciseness of the input into account in the design of

algorithms, so that they return a solution with some additional information on its

quality.

Our results. In this paper, we study the problem of computing the discrete Fréchet

distance between two polygonal curves, where the vertices of a polygonal curve are

imprecise. Each vertex belongs to a region, which is either a Euclidean ball or

an axis-parallel box in Rd. We consider two cases: the orthogonal case and the

Euclidean case. In the orthogonal case, the regions are boxes, and we use the L∞
distance. In the Euclidean case, the regions are balls and we use the Euclidean

distance.

Typical applications of this problem include computing similarity of two spatio-

temporal data sets such as polygonal trajectories of moving objects (e.g. cars, peo-

ple, animals) whose vertex locations are obtained by some positioning services (e.g.

December 30, 2010 14:49 WSPC/Guidelines frechet

3

the Global Positioning System), and, therefore, are imprecise.

Given two imprecise sequences of n and m points, respectively, we give algo-

rithms for computing the Fréchet distance lower bound between these two sequences.

In the d-dimensional orthogonal case, our algorithm runs in time O(dmn log(dmn)).

In the Euclidean case, we give an 2O(d2)m2n2 log2(mn)-time algorithm for arbitrary

dimension d, and we give an improved O(mn log2(mn) + (m2 + n2) log(mn))-time

algorithm in the plane.

We also give efficient O(dmn)-time algorithms to approximate the Fréchet dis-

tance upper bound, as well as the smallest possible Fréchet distance lower and upper

bound that can be achieved between two imprecise point sequences when one is al-

lowed to translate them. These algorithms achieve constant factor approximation

ratios in realistic settings, such as when the radii of the balls modelling the im-

precise points are roughly of the same size, or when any two consecutive imprecise

points are well-separated (so that their imprecision regions do not overlap).

2. Notation and preliminaries

We work in Rd, and we use a metric dist(·, ·) which is either the Euclidean distance,

or the L∞ distance. Let A = a1, . . . , an and B = b1, . . . , bm denote two sequences

of points in Rd. A coupling is a sequence of ordered pairs (α1, β1), . . . , (αc, βc) such

that:

• α1 = 1, β1 = 1, αc = n and βc = m.

• for each 1 6 k < c, one of the three statements below is true:

– αk+1 = αk + 1 and βk+1 = βk + 1.

– αk+1 = αk + 1 and βk+1 = βk.

– βk+1 = βk + 1 and αk+1 = αk.

The discrete Fréchet distance F(A,B) is the minimum, over all couplings, of

max16k6c dist(aαk
, bβk

), see Fig. 1.

a1

b1

a2
a3

b2

a4 = b3

Fig. 1. The discrete Fréchet distance between the point sequences A = a1, a2, a3, a4 and B =

b1, b2, b3 is achieved by the coupling (1, 1), (2, 2), (3, 2), (4, 3), and we have F(A,B) = dist(a2, b2) =
dist(a3, b2).

December 30, 2010 14:49 WSPC/Guidelines frechet

4

In what follows, we consider the case where the two point-sequences A and B

are imprecise. So, instead of knowing the position of each ai, bj , we are given two

sequences of regions of Rd denoted by H = h1, . . . , hn and V = v1, . . . , vm. These

regions will be either Euclidean balls, or axis-aligned boxes. They specify where the

points ai, bj may lie, and thus for each i, j, we have ai ∈ hi and bj ∈ vj . For all

i 6 n, we denote by Hi the subsequence h1, . . . , hi, and for all j 6 m, we denote

Vj = v1, . . . , vj .

We will consider two different cases. In the Euclidean case, the regions are Eu-

clidean balls in Rd and we use the Euclidean distance. In the orthogonal case, the

regions are axis-aligned boxes and the distance we use is the L∞ metric.

A realization of the region sequence H is a point sequence A = a1, . . . , an such

that ai ∈ hi for all 1 6 i 6 n. Similarly, a realization of the region sequence V is a

point sequence B = b1, . . . , bm such that bj ∈ vj for all 1 6 j 6 m. We denote by

A ∈R H and B ∈R V the fact that A is a realization of H, and B is a realization of

V , respectively. When A ∈R H and B ∈R V , we will say that (A,B) is a realization

of (H,V). This will be denoted as (A,B) ∈R (H,V).

Definition 1. For two region sequences H and V , the Fréchet distance lower bound

Fmin(H,V) is the minimum, over all realizations (A,B) of (H,V), of the discrete

Fréchet distance F(A,B):

Fmin(H,V) = min
(A,B)∈R(H,V)

F(A,B).

The Fréchet distance upper bound Fmax(H,V) is the maximum, over all realizations

(A,B) of (H,V), of the discrete Fréchet distance F(A,B):

Fmax(H,V) = max
(A,B)∈R(H,V)

F(A,B).

An example for the Fréchet distance lower bound is shown in Fig.2.

3. Computing the Fréchet distance lower bound Fmin

In this section, we give algorithms for computing Fmin(H,V). We first give a deci-

sion algorithm that, given a real number δ > 0, decides whether Fmin(H,V) 6 δ.

Then we give an improved decision algorithm for the Euclidean case. Based on

these decision algorithms, we finally give optimization algorithms, which compute

Fmin(H,V) in the orthogonal case and in the Euclidean case.

We denote by hδi (resp. vδj) the set of points that are at distance at most δ from

hi (resp. vj). In the Euclidean case, where hi is a ball with radius r, the set hδi is the

concentric ball with radius r+δ. In the orthogonal case, if hi = [x1, y1]×· · ·×[xd, yd],

we have hδi = [x1 − δ, y1 + δ]× · · · × [xd − δ, yd + δ].

December 30, 2010 14:49 WSPC/Guidelines frechet

5

h1

h2

h3

h4

v1

v2

v3

a1

b1

a2
a3

b2

a4 = b3

Fig. 2. The point sequences A = a1, a2, a3, a4 and B = b1, b2, b3 are realizations of the sequences

of regions H = h1, h2, h3, h4 and V = v1, v2, v3. The Fréchet distance lower bound Fmin(H,V) is

achieved by the realization (A,B), so we have Fmin(H,V) = F(A,B).

3.1. Decision algorithm for the orthogonal case

Our decision algorithm is based on dynamic programming. In this sense, it is related

to Eiter and Mannila’s algorithm for computing the discrete Fréchet distance,9 but

we use additional invariants to address the impreciseness. These new invariants are

carefully chosen feasibility regions, which indicate where the current points (ai, bj)

may lie. Note that a straightforward discretization of the space of realizations of

H,V would yield an exponential time bound, because one would have to consider

the arrangement of nm surfaces in dimension (m + n)d defined by the equation

dist(ai, bj) 6 δ for each pair i, j.

While the algorithm proceeds, we compute the cells of an array with n rows

and m columns in an iterative manner from the lower left to the upper right cell,

i.e, from (1, 1) to (n,m), where the ith row represents the region Hi, and the jth

column represents Vj . Each cell (i, j) contains two feasibility regions FHδ(i, j) ⊂ Rd
and FVδ(i, j) ⊂ Rd.

Remember that Ai (resp. Bj) denotes the sequence a1, . . . , ai (resp. b1, . . . , bj).

As we shall see in Lemma 1, the feasibility region FHδ(i, j) represents the possi-

ble locations of ai, where (Ai, Bj) is a realization of (Hi, Vj), and there exists a

coupling that achieves F(Ai, Bj) 6 δ whose last two pairs are not (i − 1, j), (i, j).

The other feasibility region FVδ(i, j) represents the possible locations of bj , when

there is such a coupling whose last two pairs are not (i, j − 1), (i, j). Thus, there is

a realization (A,B) ∈R (H,V) such that F(A,B) 6 δ if and only if the feasibility

region FHδ(n,m) or FVδ(n,m) of the upper right cell is non-empty.

December 30, 2010 14:49 WSPC/Guidelines frechet

6

The pseudocode of our decision algorithm DecideFréchetMin is given below.

Line 1 to 8 initialize some of the fields of our array for the first row and column, as

well as an extra zeroth column and row. It allows boundary cases when i = 1 and

j = 1 to be handled correctly in the main loop. The main loop is from line 9 to 15. We

give a brief description of how the feasible regions for the cell (i, j) are computed in

this loop. The case distinction reflects the definition of the discrete Fréchet distance.

Assume that we have already a coupling of ordered pairs (α1, β1), . . . , (αk, βk), then

there are three possible pairs for the next pair in the coupling. First, the next pair

could be (αk+1, βk+1) = (αk + 1, βk + 1). This case corresponds to a diagonal step

in the array and the two feasible regions of the new cell are only determined by

the location of its two corresponding impreciseness regions (line 14 and 15). The

second and third possibility for the next pair is (αk+1, βk+1) = (αk + 1, βk) or

(αk+1, βk+1) = (αk, βk + 1), which represents a vertical or a horizontal step in the

array. Clearly, for the vertical step FVδ(i, j) ⊂ FVδ(i− 1, j) and for the horizontal

step FHδ(i, j) ⊂ FHδ(i, j − 1) (line 12 and 13). See also Fig. 3 for an example of

the algorithm.

Algorithm DecideFréchetMin

Input: Two sequences of regions H = h1, . . . , hn and V = v1, . . . , vm, and a value

δ > 0.

Output: TRUE when Fmin(H,V) 6 δ, and FALSE otherwise.

1. for i← 1 to n

2. FHδ(i, 0)← ∅
3. FVδ(i, 0)← ∅
4. for j ← 1 to m

5. FHδ(0, j)← ∅
6. FVδ(0, j)← ∅
7. FHδ(0, 0)← Rd
8. FVδ(0, 0)← Rd
9. for i← 1 to n

10. for j ← 1 to m

11. if FHδ(i− 1, j − 1) = ∅ and FVδ(i− 1, j − 1) = ∅
12. then FHδ(i, j)← FHδ(i, j − 1) ∩ vδj
13. FVδ(i, j)← FVδ(i− 1, j) ∩ hδi
14. else FHδ(i, j)← hi ∩ vδj
15. FVδ(i, j)← hδi ∩ vj
16. if FHδ(n,m) = ∅ and FVδ(n,m) = ∅
17. then return FALSE

18. else return TRUE

In order to prove that our decision algorithm DecideFréchetMin is correct, we

need the following lemma.

Lemma 1. For any 2 6 i 6 n, 2 6 j 6 m, we have Fmin(Hi, Vj) 6 δ if and only if

December 30, 2010 14:49 WSPC/Guidelines frechet

7

h2

h1

h3

v1

v2

v3

(a) The regions hδi and vδi are dotted.

The points represent realizations A ∈R
H and B ∈R V where F(A,B) 6 δ.

H

V

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

(b) In each cell (i, j) FHδ(i, j), is shown in

the left lower corner and FVδ(i, j) in the

right upper corner.

Fig. 3. Example for Algorithm DecideFréchetMin.

FHδ(i, j) 6= ∅ or FVδ(i, j) 6= ∅. More precisely, for any x, y ∈ Rd, we have:

(a) x ∈ FHδ(i, j) if and only if there exists (Ai, Bj) ∈R (Hi, Vj) such that

ai = x, and such that there exists a coupling achieving F(Ai, Bj) 6 δ whose

last two pairs are not (i− 1, j), (i, j).

(b) y ∈ FVδ(i, j) if and only if there exists (Ai, Bj) ∈R (Hi, Vj) such that

bj = y, and such that there exists a coupling achieving F(Ai, Bj) 6 δ whose

last two pairs are not (i, j − 1), (i, j).

We now prove Lemma 1 when i, j > 3. The boundary cases where i = 2 or j = 2

can be easily checked. We only prove Lemma 1(a); the proof of (b) is similar. Our

proof is done by induction on (i, j), so we assume that Lemma 1 is true for all the

cells that have been handled before cell (i, j) by our algorithm; in particular, it is

true for all cells (i′, j′) 6= (i, j) such that i′ 6 i and j′ 6 j.

We first assume that x ∈ FHδ(i, j), and we want to prove that there exists

(Ai, Bj) ∈R (Hi, Vj) such that ai = x, and such that there exists a coupling achiev-

ing F(Ai, Bj) 6 δ whose last two pairs are not (i − 1, j), (i, j). We distinguish

between two cases:

• First case: FHδ(i−1, j−1) 6= ∅ or FVδ(i−1, j−1) 6= ∅. Then, by induction,

there exists (Ai−1, Bj−1) ∈R (Hi−1, Vj−1) such that F(Ai−1, Bj−1) 6 δ. We

also know that FHδ(i, j) was set to hi∩vδj at line 14. In other words, x ∈ hi,

December 30, 2010 14:49 WSPC/Guidelines frechet

8

and there exists y′ ∈ vj such that dist(x, y′) 6 δ. So we extend Ai−1 and

Bj−1 by choosing ai = x and bj = y′. We extend a coupling achieving

F(Ai−1, Bj−1) 6 δ with the pair (i, j), and obtain a coupling achieving

F(Ai, Bj) 6 δ whose last two pairs are (i− 1, j − 1), (i, j).

• Second case: FHδ(i−1, j−1) = ∅ and FVδ(i−1, j−1) = ∅. Then FHδ(i, j)

was set to FHδ(i, j − 1) ∩ vδj at line 12. Thus x ∈ FHδ(i, j − 1), so by

induction, there exists (Ai, Bj−1) ∈R (Hi, Vj−1) such that ai = x and

F(Ai, Bj−1) 6 δ. Since x ∈ vδj , there exists y′ ∈ vj such that dist(x, y′) 6 δ.

So we extend Bj−1 by choosing bj = y′. We extend a coupling achieving

F(Ai, Bj−1) = δ with the pair (i, j), and we obtain a coupling achieving

F(Ai, Bj) 6 δ whose last two pairs are (i, j − 1), (i, j).

Now we assume that there exists (Ai, Bj) ∈R (Hi, Vj) such that there exists a

coupling C achieving F(Ai, Bj) 6 δ whose last two pairs are not (i− 1, j), (i, j). We

want to prove that ai ∈ FHδ(i, j). We distinguish between two cases:

• First case: FHδ(i − 1, j − 1) 6= ∅ or FVδ(i − 1, j − 1) 6= ∅. It implies that

FHδ(i, j) was set to hi ∩ vδj at line 14. Since Ai ∈R Hi, we have ai ∈ hi.
Since Bj ∈R Vj and F(Ai, Bj) 6 δ, it follows that dist(ai, bj) 6 δ, and thus

ai ∈ vδj . Thus, ai ∈ FHδ(i, j).

• Second case: FHδ(i−1, j−1) = ∅ and FVδ(i−1, j−1) = ∅. Then, by induc-

tion, we have Fmin(Hi−1, Vj−1) > δ, which implies that F(Ai−1, Bj−1) > δ,

so the pair (i − 1, j − 1) cannot appear in C. It follows that the last three

pairs of C can only be (i, j−2), (i, j−1), (i, j) or (i−1, j−2), (i, j−1), (i, j).

So, by induction, we have ai ∈ FHδ(i, j − 1). Since F(Ai, Bj) 6 δ, we have

ai ∈ vδj . As FHδ(i − 1, j − 1) = ∅ and FVδ(i − 1, j − 1) = ∅, the value of

FHδ(i, j) was set to FHδ(i, j − 1)∩ vδj at line 14, so we have ai ∈ FHδ(i, j).

This completes the proof of Lemma 1. It follows immediately from Lemma 1

that Algorithm DecideFréchetMin decides correctly whether Fmin(H,V) 6 δ. We

still need to analyze this algorithm. In the orthogonal case, line 12–15 consist in

intersecting two axis-aligned boxes in dimension d; it can be done trivially in O(d)

time. Thus, we obtain the following result:

Theorem 1. In the d-dimensional orthogonal case, given δ > 0, and given two

imprecise sequences H and V of n and m points, respectively, we can decide in

O(dmn) time whether Fmin(H,V) ≤ δ.

3.2. Decision algorithm for the Euclidean case

In this section, we give an efficient algorithm for the Euclidean case. A naive imple-

mentation of Algorithm DecideFréchetMin would require to construct the regions

FHδ(i, j) and FVδ(i, j), which may be intersections of Ω(n) balls in Rd. Even in

R2, it would increase the running time of our algorithm by an order of magnitude.

December 30, 2010 14:49 WSPC/Guidelines frechet

9

To improve the running time, we will show how to compute these intersections in

amortized 2O(d2) log(mn) time per step. We will need the following result:

Lemma 2. We can decide in 2O(d2)k time whether k balls in d-dimensional Eu-

clidean space have an empty intersection.

Proof. We consider a collection of k balls in Rd. We use the standard lifting-

map,8 which maps any point x = (x1, . . . , xd) ∈ Rd to the point x̂ =(
x1, . . . , xd,

∑d
i=1 x

2
i

)
∈ Rd+1. Then a ball B ⊂ Rd can be mapped to an affine

hyperplane H ⊂ Rd+1 such that x ∈ B if and only if x̂ is below H. Thus, deciding

whether k balls have a non-empty intersection reduces to deciding whether there

is a point x such that x̂ is below all the corresponding hyperplanes. To do this, it

suffices to decide whether there is a point ŷ = (y1, . . . , yd+1) below all these hy-

perplanes and such that
∑d
i=1 y

2
i 6 yd+1. It can be done in 2O(d2)k time using an

algorithm of Dyer for some generalized linear programs in fixed dimension;7 in our

case, the linear constraints for Dyer’s algorithm are given by our set of hyperplanes,

and the convex function we use is (y1, . . . , yd+1) 7→ −yd+1 +
∑d
i=1 y

2
i .

We now explain how we implement line 13 in amortized 2O(d2) log n time. We

fix the value of j, and we show how to build an incremental data structure that

decides in amortized 2O(d2) log n time whether FVδ(i, j) = ∅. To achieve this, we

do not maintain the region FVδ(i, j) explicitly: we only maintain an auxiliary data

structure that allows us to decide quickly whether it is empty or not. During the

course of Algorithm DecideFréchetMin, the region FVδ(i, j) can be reset to hδi ∩ vj
at line 15, and otherwise, it is the intersection of FVδ(i − 1, j) with hδi . So at any

time, we have FVδ(i, j) = hδi0 ∩ hδi0+1 · · · ∩ hδi ∩ vj for some 1 6 i0 6 i.

So our auxiliary data structure needs to perform three types of operations:

(1) Set S = ∅.
(2) Insert the next ball into S.

(3) Decide whether the intersection of the balls in S is empty.

When we run Algorithm DecideFréchetMin on column j, the sequence of n

balls hδ1, . . . , h
δ
n is known in advance, but not the sequence of operations. So this is

the assumption we make for our auxiliary data structure: we know in advance the

sequence of balls, but the sequence of operations is given online. A trivial imple-

mentation using Lemma 2 requires 2O(d2)n time per operation. Using exponential

and binary search,15 we will show how to do it in amortized 2O(d2) log n time per

operation.

Operation 1 is trivial to implement. To implement operation 2, suppose that,

before we perform this operation, the cardinality |S| of S is s = 2`, for some integer

`. Then, using Lemma 2, we check whether the intersection of the balls in S and

the next s balls is empty. If so, we find by binary search the first subsequence of

balls, starting at the balls of S, whose intersection is empty. By Lemma 2, it can

December 30, 2010 14:49 WSPC/Guidelines frechet

10

be done in 2O(d2)s log s time. Then we can perform in constant time each operation

of type 2 or 3 until the next time operation 1 is performed. On the other hand, if

the intersection of the balls in S and the next s balls is not empty, we record this

fact. Then, until the cardinality of S reaches 2s = 2`+1, or we perform operation 1,

we can perform each operation of type 2 or 3 in constant time.

This data structure needs only amortized 2O(d2) log n time per operation. Keep-

ing one such data structure for each value of j, we can perform line 13 of Algo-

rithm DecideFréchetMin in amortized 2O(d2) log n time. Similarly, we can implement

line 12 in amortized 2O(d2) logm time. Overall, we obtain the following result:

Theorem 2. In the d-dimensional Euclidean case, given δ > 0, and given two

imprecise sequences H and V of n and m points, respectively, we can decide in

2O(d2)mn log(mn) time whether Fmin(H,V) ≤ δ.

3.3. Optimization algorithms

In this section, we give optimization algorithms for computing the Fréchet distance

lower bound in the orthogonal case, and in the Euclidean case. They are based on

the decision algorithms of sections 3.1 and 3.2.

We first consider the orthogonal case. The result of the decision algorithm may

only change at some value of δ such that a box FHδ(i, j) or FVδ(i, j) degenerates to

a box of dimension less than d. It may happen when the sides of two boxes of type

hδi , hi, v
δ
j , or vj have a common supporting hyperplane. Therefore, if we denote by

(x1, . . . , xd, y1, . . . , yd) the coordinates of the box [x1, y1]× · · · × [xd, yd], and if we

denote by (c1, . . . , ck) the sequence of all these coordinates in increasing order, the

optimal value Fmin(H,V) has to be of the form cj − ci or (cj − ci)/2 for some i 6 j.

The matrix with coefficients cij = max{0, cj−ck+1−i} is a k-by-k monotone matrix

with k 6 dmn, so using the technique by Frederickson and Johnson for searching in

such a matrix,1,10 we can find Fmin(H,V) using O(log(dmn)) calls to our decision

algorithm. Thus, we obtained the following result:

Theorem 3. In the d-dimensional orthogonal case, given two imprecise sequences

H and V of n and m points, respectively, we can compute Fmin(H,V) in time

O(dmn log(dmn)).

This approach does not work in the Euclidean case, so instead of using Freder-

ickson and Johnson’s technique, we use parametric search.1,2 Using the algorithm

from Theorem 2 both as the decision algorithm and the generic algorithm (without

making it parallel), we obtain the following result:

Theorem 4. In the d-dimensional Euclidean case, given two imprecise

sequences H and V of n and m points, respectively, we can compute Fmin(H,V) in

time 2O(d2)m2n2 log2(mn).

We can improve this result when d = 2. To achieve this, we apply parametric

search in a different way. Observe that the result of Algorithm DecideFréchetMin

December 30, 2010 14:49 WSPC/Guidelines frechet

11

only changes when there is a change in the combinatorial structure of the arrange-

ment of the circles bounding the disks hi, h
δ
i , vj , v

δ
j for all i, j. So, as a generic algo-

rithm, we use an algorithm that computes the arrangement of these 2m+2n circles.

There exists such an algorithm with running time O(log(mn)) using O(m2 + n2)

processors.2 The decision algorithm is just our algorithm DecideFréchetMin, which

runs in O(mn log(mn)) time. So we need a total of O((m2 + n2) log(mn)) time to

run the generic algorithm, and a total of O(mn log2(mn)) time for the decision

algorithm. Thus, we obtain the following result:

Theorem 5. In the two-dimensional Euclidean case, given two imprecise se-

quences H and V of n and m points, respectively, we can compute Fmin(H,V)

in O(mn log2(mn) + (m2 + n2) log(mn)) time.

4. Approximation algorithms

The running time of our algorithm for computing Fmin exactly in the Euclidean

case, when the dimension is larger than 2, may be too large for some applications.

The situation is worse for the problem of computing Fmax since we currently do not

even have a polynomial time algorithm. The problem of matching imprecise shapes

with respect to the discrete Fréchet distance under translations seems even more

complicated; in particular, we currently do not know how to solve it in polynomial

time.

We use the following notation for the discrete Fréchet distance with imprecise

points under translation. For a translation t and a region sequence H = h1, . . . , hn
we denote by H + t the translate of H by t. Formally H + t = h1 ⊕ t, . . . , hn ⊕ t
where hi ⊕ t denotes the Minkowski sum of hi and t, i.e., hi ⊕ t = {x+ t | x ∈ hi}.

Definition 2. For two region sequences H and V , the smallest Fréchet distance

lower bound under translation is the minimum over all translations t of the Fréchet

distance lower bound Fmin(H + t, V):

Fmin
tr (H,V) = min

t
Fmin(H + t, V).

The smallest Fréchet distance upper bound under translation is the minimum over

all translations t of the Fréchet distance upper bound Fmax(H + t, V):

Fmax
tr (H,V) = min

t
Fmax(H + t, V).

We obtained efficient algorithms to approximate Fmin, Fmax, Fmin
tr , and Fmax

tr in

arbitrary dimension d.

As in the previous sections, we are given two input sequences H and V of n and

m imprecise points, respectively, in d-dimensional space.

In the Euclidean case, we use the Euclidean distance, and we assume that the

imprecision regions hi, vj are Euclidean balls with centers a0i , b
0
j and radius 0 <

rmin ≤ r(hi), r(vj) ≤ rmax, where rmin is the minimum of radii of all balls in H and

December 30, 2010 14:49 WSPC/Guidelines frechet

12

V , rmax is the maximum of radii of all balls in H and V and r(b) denotes the radius

of the ball b.

In the orthogonal case, we use the L∞ distance, and the imprecision region hi
(resp. vj) is an axis-parallel box that contains an L∞ ball with radius rmin and

center a0i (resp. b0j), and is contained in an L∞ ball with radius rmax and with the

same center a0i (resp. b0j).

In both cases, we denote A0 = (a01, . . . , a
0
n) and B0 = (b01, . . . , b

0
m).

The approximation quality for Fmax
tr and Fmax depends on the error parameters

rmin, rmax. In particular we get constant factor approximations for the case rmax =

Θ(rmin), which seems to be a reasonable assumption in practice.

We obtain the following result for approximating the Fréchet distance upper

bound.

Theorem 6. In dimension d, given two imprecise sequences H and V of n and m

points, respectively, we can compute in O(dmn) time a value APPmax(H,V) such

that

Fmax(H,V) ≤ APPmax(H,V) ≤ (1 + rmax/rmin)Fmax(H,V).

To prove Theorem 6, we require the following technical results:

Lemma 3. Fmax(H,V) ≥ 2rmin.

Proof. Let A = a1, . . . , am be a realization of the region sequence H = h1, . . . , hm
and B = b1, . . . , bn be a realization of the region sequence V = v1, . . . , vn. Since

F(A,B) ≥ dist(a1, b1) we have that

Fmax(H,V) ≥ max
a1∈h1,b1∈v1

dist(a1, b1) ≥ 2rmin.

Lemma 4. F(A0, B0) ≤ Fmax(H,V) ≤ F(A0, B0) + 2rmax.

Proof. The first inequality is obvious from the definition of Fmax. To show the

second inequality we consider some realization (A,B) ∈R (H,V) with A =

a1, . . . , am and B = b1, . . . , bn such that Fmax(H,V) = F(A,B). Moreover let

(α1, β1), . . . , (αc, βc) be a coupling such that F(A0, B0) = max16k6c dist(a0αk
, b0βk

).

Then we have that

Fmax(H,V) = F(A,B) ≤
max
16k6c

dist(aαk
, bβk

) = max
16k6c

dist(a0αk
+ aαk

− a0αk
, b0αk

+ bβk
− b0αk

) ≤

max
16k6c

dist(a0αk
, b0αk

) + 2rmax = F(A0, B0) + 2rmax.

We are now able to complete the proof of Theorem 6.

We let APPmax(H,V) = F(A0, B0)+2rmax. This value can be computed in O(dmn)

time.9 From Lemma 4 we know that Fmax(H,V) ≤ APPmax(H,V). On the other

hand Lemma 3 implies that

APPmax(H,V) ≤ Fmax(H,V) + 2rmax ≤ (1 + rmax/rmin)Fmax(H,V).

December 30, 2010 14:49 WSPC/Guidelines frechet

13

The approximation quality for Fmin
tr and Fmin depends on the error parameter

rmax and an additional parameter measuring how well-separated any two consecutive

points in an input sequence are:

Definition 3. For a parameter ∆sep > 0, we say that a region sequence H =

h1, . . . , hn is ∆sep-separated if minx∈hi,y∈hi+1 dist(x, y) ≥ ∆sep for all 1 ≤ i ≤ n−1.

We get constant factor approximations for the case ∆sep = Ω(rmax), which again

seems to be a realistic assumption. In particular, we obtain the following result for

approximating the Fréchet distance lower bound.

Theorem 7. In dimension d, given two ∆sep-separated region sequences H and

V of n and m points, respectively, we can compute in O(dmn) time a value

APPmin(H,V) such that

Fmin(H,V) ≤ APPmin(H,V) ≤ (1 + 4rmax/∆sep)Fmin(H,V).

When m 6= n, one point has to be matched with two different points from the

other sequence, which, using the separation property, tells us that Fmin(H,V) >
∆sep/2. It implies that the realization (A0, B0) ∈R (H,V) is good enough for our

purpose. If m = n, we separate between two cases: when each ai is matched to bi,

which is easy to solve, and when it is not the case, and we use (A0, B0) as above.

To facilitate the proof of this result we first need to introduce some more ter-

minology. The coupling (α1, β1), . . . , (αn, βn) with αi = βi = i for 1 ≤ i ≤ n

between the two point sequences A = a1, . . . , an and B = b1, . . . , bn of the (same)

length n is called the matching coupling of A and B (sequences of different length

do not have a matching coupling). The matching distance F1−1(A,B) is the value

max16k6n dist(ak, bk) (for sequences of different length F1−1(A,B) is not defined).

The discrete non-matching Fréchet distance F¬1−1(A,B) is the minimum, over all

couplings different from the matching coupling, of max16k6c dist(aαk
, bβk

).

For technical reasons we will also consider for two region sequences H and V ,

their matching distance lower bound Fmin
1−1(H,V) which is the minimum, over all

realizations (A,B) of (H,V), of the coupling distance F1−1(A,B):

Fmin
1−1(H,V) = min

(A,B)∈R(H,V)
F1−1(A,B).

Note that Fmin
1−1(H,V) can easily be computed in O(dn) time.

In a similar manner we define for two region sequences H and V , their non-

matching Fréchet distance lower bound Fmin
¬1−1(H,V) which is the minimum, over

all realizations (A,B) of (H,V), of the non-matching Fréchet distance F¬1−1(A,B):

Fmin
¬1−1(H,V) = min

(A,B)∈R(H,V)
F¬1−1(A,B).

It is clear that Fmin(H,V) = min(Fmin
1−1(H,V),Fmin

¬1−1(H,V)). With a slight mod-

ification of the algorithm by Eiter and Mannila,9 Fmin
¬1−1(H,V) can be computed in

O(dnm) time.

December 30, 2010 14:49 WSPC/Guidelines frechet

14

We require the following technical results:

Lemma 5. Let H and V be two ∆sep-separated region sequences. Then

Fmin
¬1−1(H,V) ≥ ∆sep/2.

Proof. Let A = a1, . . . , am and B = b1, . . . , bn be realizations of the sequences

H,V , and let (α1, β1), . . . , (αc, βc) be any coupling of A, B that is not the matching

coupling. Such a coupling contains two pairs (αi, βi), (αi+1, βi+1) such that, without

loss of generality, αi = αi+1 and βi+1 = βi + 1. For a = aαi
, b = bβi

, and b′ =

bβi+1
= bβi+1 we then get that

∆sep ≤ dist(b, b′) ≤ dist(a, b) + dist(a, b′) ≤ 2 max
16k6c

dist(aαk
, bβk

),

and therefore max16k6c dist(aαk
, bβk

) ≥ ∆sep/2.

Lemma 6. Fmin
¬1−1(H,V) ≤ F¬1−1(A0, B0) ≤ Fmin

¬1−1(H,V) + 2rmax.

Proof. The first inequality is obvious from the definition of Fmin
¬1−1. Let (A,B) ∈R

(H,V) with A = a1, . . . , am and B = b1, . . . , bn be a realization such that

Fmin
¬1−1(H,V) = F¬1−1(A,B) and let (α1, β1), . . . , (αc, βc) be a coupling such that

F¬1−1(A,B) = max16k6c dist(aαk
, bβk

). Then we have that

F¬1−1(A0, B0) ≤
max
16k6c

dist(a0αk
, b0βk

) = max
16k6c

dist(aαk
+ a0αk

− aαk
, bβk

+ b0αk
− bβk

) ≤

max
16k6c

dist(aαk
, bβk

) + 2rmax = Fmin
¬1−1(H,V) + 2rmax.

We can now complete the proof of Theorem 7.

Let H and V be two ∆sep-separated region sequences. Combining Lemmas 5 and 6

we get

Fmin
¬1−1(H,V) ≤ F¬1−1(A0, B0) ≤ Fmin

¬1−1(H,V) + 2rmax ≤
(1 + 4rmax/∆sep)Fmin

¬1−1(H,V).

Since Fmin(H,V) = min(Fmin
1−1(H,V),Fmin

¬1−1(H,V)) this finishes the proof by letting

APPmin(H,V) = min(Fmin
1−1(H,V),F¬1−1(A0, B0)).

Finally, we obtain the results below for approximating the Fréchet distance lower

and upper bounds under translation. Our algorithms run in O(dmn) time, and we

currently do not know if these values can be computed exactly in polynomial time.

Theorem 8. In dimension d, given two imprecise sequences H and V of n and

m points, respectively, we can compute in O(dmn) time two values APPmax
tr (H,V)

and APPmin
tr (H,V) such that

(i) Fmax
tr (H,V) ≤ APPmax

tr (H,V) ≤ (2 + 3rmax/rmin + r2max/r
2
min)Fmax

tr (H,V), and

(ii) Fmin
tr (H,V) ≤ APPmin

tr (H,V) ≤ (2 + 12rmax/∆sep + 16r2max/∆
2
sep)Fmin

tr (H,V).

December 30, 2010 14:49 WSPC/Guidelines frechet

15

Since we use the approximation algorithms from the previous sections as sub-

routines the approximation quality again depends on the error and separation pa-

rameters.

The idea is to use the translation that maps a01 to b01. After applying this trans-

lation to H, we compute Fmax and Fmin using the approximation algorithms above.

We require the following technical result:

Lemma 7. Let tapp be the translation that maps a01 to b01. Then

FM(H + tapp, V) ≤ 2FM
tr (H,V) + 2rmax for M ∈ {min,max}.

Proof.

Let topt be a translation such that FM
tr (H,V) = FM(H + topt, V). We claim that

||tapp − topt|| ≤ FM
tr (H,V) + 2rmax. (1)

To see this, consider two realizations (A,B) ∈R (H,V) with A = a1, . . . , am and

B = b1, . . . , bn such that FM
tr (H,V) = FM(H+ topt, V) = F(A+ topt, B). Let ta01 7→a1

be the translation that maps a01 to a1, ttopt(a1)7→b1 be the translation that maps

topt(a1) to b1, and tb1 7→b01 be the translation that maps b1 to b01. Note that

tapp = tb1 7→b01 ◦ ttopt(a1)7→b1 ◦ topt ◦ ta01 7→a1 , so

||tapp − topt|| ≤ ||tb1 7→b01 ||+ ||ttopt(a1) 7→b1 ||+ ||ta01 7→a1 || ≤
||topt(a1)− b1||+ 2rmax ≤ F(A+ topt, B) + 2rmax = FM

tr (H,V) + 2rmax.

To finish the proof, observe that

FM(H + tapp, V) = FM(H + topt + tapp − topt, V) ≤
FM(H + topt, V) + ||tapp − topt|| = FM

tr (H,V) + ||tapp − topt||.

The claim now follows with (1).

We can now complete the proof of Theorem 8. Let tapp be defined as above (in

Lemma 7). Lemma 7 (for M = max) and the lower bound on Fmax from Lemma 3

gives

Fmax(H + tapp, V) ≤ (2 + (rmax/rmin))Fmax
tr (H,V).

Combining this with Theorem 6 finishes the proof of Theorem 8(i) by letting

APPmax
tr (H,V) = APPmax(H + tapp, V).

Lemma 7 (for M = min) and the lower bound on Fmin from Lemma 5 shows

that for two ∆sep-separated region sequences H and V

Fmin(H + tapp, V) ≤ (2 + (4rmax/∆sep))Fmin
tr (H,V).

Combining this with Theorem 7 finishes the proof of Theorem 8(ii) by letting

APPmin
tr (H,V) = APPmin(H + tapp, V).

December 30, 2010 14:49 WSPC/Guidelines frechet

16

5. Conclusion

In this paper, we gave an efficient algorithm for computing the Fréchet distance

lower bound between two imprecise point sequences. We also gave efficient ap-

proximation algorithms for the Fréchet distance upper bound, and for the Fréchet

distance upper bound and lower bound under translations.

Unfortunately, our dynamic programming approach for the Fréchet distance

lower bound does not seem to apply to the Fréchet distance upper bound. So we

currently do not have a polynomial-time algorithm for computing the exact Fréchet

distance upper bound. This problem may be hard, as it sometimes happens that a

maximization problem for imprecise points is much harder than the corresponding

minimization problem. For instance, Löffler and Van Kreveld showed that com-

puting the maximum area or perimeter of the convex hull of n imprecise points

is NP-hard, even though the corresponding minimization problems can be solved

in O(n2) and O(n log n) time respectively.14 Thus, it would be interesting to show

that the exact Fréchet distance upper bound problem is NP-hard, or to find a

polynomial-time algorithm.

Acknowledgements

Work by Ahn was supported by the Korea Research Foundation Grant funded by the

Korean Government(KRF-2008-614-D00008). Work by Knauer and Scherfenberg

was supported by the German Science Foundation (DFG) under grant Al 253/5-3.

Work by Schlipf was supported by the German Science Foundation (DFG) within

the research training group ’Methods for Discrete Structures’(GRK 1408).

References

1. P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. Com-
puting Surveys, 30(4):412–458, 1998.

2. P. K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching in
geometric optimization. J. Algorithms, 17(3):292–318, 1994.

3. H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
International Journal of Computational Geometry and Applications, 5:75–91, 1995.

4. H. Alt, C. Knauer, and C. Wenk. Matching polygonal curves with respect to the
Fréchet distance. In STACS, volume 2010 of Lecture Notes in Computer Science,
pages 63–74. Springer, 2001.

5. H. Alt, C. Knauer, and C. Wenk. Comparison of distance measures for planar curves.
Algorithmica, 38(1):45–58, 2003.

6. B. Aronov, S. Har-Peled, C. Knauer, Y. Wang, and C. Wenk. Fréchet distance for
curves, revisited. In ESA, volume 4168 of Lecture Notes in Computer Science, pages
52–63. Springer, 2006.

7. M. E. Dyer. A class of convex programs with applications to computational geometry.
In Proc. 8th Symposium on Computational Geometry, pages 9–15. ACM, 1992.

8. H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge University
Press, 2001.

9. T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technical Report CD-

December 30, 2010 14:49 WSPC/Guidelines frechet

17

TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria,
1994.

10. G. N. Frederickson and D. B. Johnson. Generalized selection and ranking: Sorted
matrices. SIAM Journal on Computing, 13(1):14–30, 1984.

11. A. A. Khanban and A. Edalat. Computing Delaunay triangulation with imprecise
input data. In Proc. 15th Canadian Conference on Computational Geometry, pages
94–97, 2003.

12. C. Knauer, M. Löffler, M. Scherfenberg, and T. Wolle. The directed Hausdorff distance
between imprecise point sets. In ISAAC, volume 5878 of Lecture Notes in Computer
Science, pages 720–729. Springer, 2009.

13. M. Löffler and J. Snoeyink. Delaunay triangulation of imprecise points in linear time
after preprocessing. Computational Geometry: Theory and Applications, 43(3):234–
242, 2010.

14. M. Löffler and M. J. van Kreveld. Largest and smallest tours and convex hulls for
imprecise points. In SWAT, volume 4059 of Lecture Notes in Computer Science, pages
375–387. Springer, 2006.

15. A. Moffat and A. Turpin. Compression and Coding Algorithms. Kluwer, 2002.
16. G. Rote. Computing the Fréchet distance between piecewise smooth curves. Compu-

tational Geometry: Theory and Applications, 37(3):162–174, 2007.
17. J. Sember and W. Evans. Guaranteed Voronoi diagrams of uncertain sites. In Proc.

20th Annual Canadian Conference on Computational Geometry, 2008.

