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Abstract

We study empty pseudo-triangles in a set P of n points in the plane, where an empty
pseudo-triangle has its three convex vertices and its concave vertices at the points of P, and
no points of P lie inside. We give bounds on the number of possible empty pseudo-triangles.
If the three convex vertices are fixed, there can be between ©(n?) and ©(n?) empty pseudo-
triangles, whereas if the convex vertices are not fixed, this number lies between ©(n®) and
©(n"). If we count only star-shaped pseudo-triangles, the bounds are ©(n?) and ©(n°). We
also study optimization problems: minimizing or maximizing the perimeter or the area over
all empty pseudo-triangles defined by P. If the convex vertices are fixed, we can solve these
problems in O(n?) time. If the convex vertices are not given, the running times are O(n®) for
the maximization problems and O(nlogn) for the minimization problems.

1 Introduction

A pseudo-triangle is a simple polygon with exactly three convex vertices. These convex vertices
are connected by straight line segments or by chains of concave vertices (we consider a vertex with
internal angle 7 to be concave). By definition, any triangle is a pseudo-triangle, and the convex
hull of any pseudo-triangle is a triangle, see Figure 1. A pseudo-triangle is star-shaped if a point
q exists in the interior such that for any point p in the pseudo-triangle, the whole line segment pg

is inside as well.

Figure 1: Empty pseudo-triangles in a point set.

Pseudo-triangles were introduced in the context of computing visibility relations among convex
obstacles in the plane [15, 16]. Later, a number of different optimization problems of pseudo-
triangulations, i.e., decompositions of a region into pseudo-triangles, have been studied [1, 3, 12,
14, 17]. For an overview of pseudo-triangulations we refer to the survey by Rote et al. [18]. In
this paper, we are interested in empty pseudo-triangles defined by a given set P of n points in the
plane. A pseudo-triangle is defined by a set of points if its vertices are taken from the set, and it
is empty if no points of the set lie in the interior.
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Table 1: Bounds on the number of empty pseudo-triangles in a point set.

Type Fixed convex corners Arbitrary corners
of PT minimum | maximum | minimum | maximum
general O(n?) e(n?) O(n3) O(n%)
star-shaped |  O(n?) O(n?) 0(n?) O(n®)

Table 2: Running times for optimization problems on empty pseudo-triangles in a point set.
Objective Fixed convex corners | Arbitrary corners
minimize perimeter or area O(n?) O(nlogn)
maximize perimeter or area O(n?) O(n®)

Counting empty convex k-gons defined by planar point sets is a classic problem in combinatorial
geometry that goes back to Erdds [11]. In particular, he asked for the smallest number N (k) such
that any set P of at least N(k) points contains the vertex set of a convex k-gon that does not
contain any point of P in its interior. A related question asks for the minimum number of empty
convex k-gons any set of n points must contain. It is typically assumed that the n points lie in
general position: no three points are co-linear.

Concerning the number of empty convex polygons, it was shown in [5, 9, 13] that for any
set P of n points in general position, there are Q(n?) subsets of three, four, five, and six points
that form empty convex triangles, quadrilaterals, pentagons, and hexagons. These bounds are
tight. Furthermore, there are arbitrarily large sets of points that do not contain any empty convex
heptagon. Trivially, for any constant k, the maximum number of empty convex k-gons is O (n*),
which is obtained by taking n points in convex position.

A related algorithmic question is to ask for smallest or largest shapes defined by a set P of
n points. Edelsbrunner and Guibas showed that the minimum area triangle (which is necessarily
empty) with its vertices at points of P can be computed in O(n?) time [10]. The largest empty
circle in a bounded region containing n points can be computed in O(n logn) time using generalized
Voronoi diagrams [8, 19]. The largest empty rectangle in a bounded region can be determined in
O(n?) time [6].

In this paper we first determine combinatorial bounds on the minimum and maximum number
of pseudo-triangles that are defined by a set P of n points. If we do not require the pseudo-triangles
to be empty of points in P, then there can be exponentially many. For example, place one point pg
at the origin and all other n — 1 points on the lower left quarter of the circle (z—1)?+(y —1)? = 1.
Then po together with any subset of P\ {pg} of size > 2 forms a pseudo-triangle, so there are
at least 2°~! —n of them. On the other hand, the minimum number of pseudo-triangles is cubic
(e.g., for points in convex position, see Theorem 6).

We focus on empty pseudo-triangles, and first prove some observations in Section 2. In Sec-
tion 3.1 we assume that the three convex vertices of the pseudo-triangle are fixed, and there are
n points inside the triangle defined by the convex vertices. We analyze the number of empty
pseudo-triangles in this case. We study four combinatorial questions, namely the minimum and
mazimum number of empty general and star-shaped pseudo-triangles. We give tight upper and
lower bounds for each question; our results are summarized in the left half of Table 1. Observe that
the (asymptotic) number of empty pseudo-triangles in the general case can be quadratic or cubic,
depending on the point set, but there are always quadratically many star-shaped pseudo-triangles.
If the convex vertices of the empty pseudo-triangles are not fixed, then we get the same four ques-
tions, and most of the ideas used before can be extended. We obtain the results summarized in
the right half of Table 1.

We consider the following four optimization problems in Section 4: minimizing or maximizing
the perimeter, and minimizing or maximizing the area over all empty pseudo-triangles. Again,
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Figure 2: Every empty pseudo-triangle is uniquely determined by a triple (7, j, k) of indices.

we study these problems when the convex vertices of the pseudo-triangle are fixed and when they
can be freely chosen among the points of P. The running times of our results are summarized in
Table 2, the space requirement is O(n) in all cases. The efficiency of the minimization problems in
the general case follows from the observation that the smallest pseudo-triangle will be a triangle,
which simplifies the problem drastically.

2 Preliminaries

Let u, v, and w be three points in the plane. Without loss of generality, we assume that the segment
connecting v and v is horizontal with u to the left of v, and that w lies above the segment. Let P
be a set of n points inside the triangle Auvw, and we assume that no three points of P U {u, v, w}
lie on a line. We denote the line that passes through two points p and ¢ by 4(p, q).

Any pseudo-triangle with u, v, and w as the convex vertices has a concave chain between pairs
of these vertices. Each convex vertex is the common point of two concave chains. Let p;, p;,
and pg be the first vertices encountered when we follow the concave chains clockwise along the
pseudo-triangle from u, v, and w, respectively. Figure 2 shows these vertices and three lines, each
induced by a corner and its corresponding vertex. Consider the gray region bounded by the lines
(u,w), £(u,p;) and £(w,pr). For the pseudo-triangle to be empty, all points from P inside the
gray region must be enclosed by the concave chain connecting v and w. Therefore, the polygonal
chain enclosing the points in the gray region is uniquely defined by p; and pg, and we denote it by
Cuw (i, k). Analogously, the concave chain C,(k,j) connecting w and v is uniquely defined by py
and pj, and the concave chain C,(j,7) connecting v and v is uniquely defined by p; and p;. We
observe:

Observation 1 Three points p;, p;j, and py define an empty pseudo-triangle if and only if:
(1) point p; lies left of £(w,pr), point p; lies below ¢(u,p;), and point py lies above ¢(v,p;), and
(ii) the triangular region below £(u,p;), above £(v,p;) and left of £(w,px) does not contain any
point of P in its interior.
Furthermore, there is at most one such pseudo-triangle.

In the following, we simplify the notation of the concave chains by omitting the indices of the
chains if the points p;, p;, and py, are defined in the context. The chains are then denoted by C,,,,
Cow, and Cyy.

We assume all points of the input are in general position. In particular, no three points lie on
a line.
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Figure 3: Construction for the Q(n?) lower bound on the maximum number of empty pseudo-
triangles.

Figure 4: Construction for the O(n?) upper bound on the maximum number of empty pseudo-
triangles.

3 The Number of Empty Pseudo-Triangles

3.1 Pseudo-triangles with given corners

In this section we give tight upper and lower bounds on the number of empty pseudo-triangles.
First, we assume that the convex vertices of the pseudo-triangle are fixed, and we show that there
are different upper bounds if we allow any empty pseudo-triangle and if we restrict ourselves to
only star-shaped pseudo-triangles. Second, we drop the assumption of fixed convex vertices, which
leads to an increase in both bounds on both types of empty pseudo-triangles.

3.1.1 General pseudo-triangles

Theorem 1 Given three pointsu,v,w and a set P of n points inside Auvw, the mazximum number
of empty pseudo-triangles with u,v,w as the convex vertices is O(n?).

Proof: The lower bound is an easy construction, see Figure 3.

To prove the upper bound, let p;, p;, and py be any three points of P. We analyze the number
of (empty) pseudo-triangles such that edge @p; is on the chain C,,,, edge Tp; is on the chain
Cuv, and edge wpy, is on the chain Cy,,. Clearly, if any two of the three edges intersect, then no
pseudo-triangle of this type exists. Otherwise, we extend the edges up;, Up;, and Wpy, in a special
way.

Assume first that ¢(u,p;) is below £(v, p;) N €(w, pi). Then we let point ¢; = €(u, p;) N L€(v,p;),
point ¢; = ¢(v,p;) N &(w, pg), and point g = €(w, px) N £(u, p;), see Figure 4 (left).

If Agigjqr contains points of P, then no pseudo-triangle of this type exists: Either the cor-
responding pseudo-triangle is not empty, or the concavity of one of the chains is compromised.
Furthermore, all points in Auwvg; must be excluded via the chain Cy,, all points in Avwg; must
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Figure 5: Construction for the O(n?) upper bound (left) and Q(n?) lower bound (right) of the
minimum number of empty pseudo-triangles.

be excluded via the chain C,,,, and all points in Awugg must be excluded via the chain C,,. This
fully defines the partition as in Observation 1, so we count at most one pseudo-triangle.

Next assume that ¢(u,p;) is above £(v,p;) N ¢(w,pr); note that due to the specification of
Di, Dj, and pg, this case is not symmetric to the previous one. The argument, however, is still
analogous. This time we let point ¢; = ¢(u,p;) N ¢(w, px), point ¢; = £(v,p;) N L(u, p;), and point
qr = U(w,pr) N L(v,p;), see Figure 4 (right). If Ag;q;qr contains points of P, then no pseudo-
triangle of this type exists: Either the corresponding pseudo-triangle is not empty, or the concavity
of one of the chains is compromised. The argument is exactly as in the previous case, so we again
count at most one pseudo-triangle.

All remaining cases (¢(u, p;) contains £(v, p;) N€(w, px), or some chain(s) do not contain points
of P) are straightforward to analyze. Since there are 6 - (g) choices for p;, p;, and py, the upper
bound follows. [

Theorem 2 Given three points u,v,w and a set P of n points inside Auvw, the minimum number
of empty pseudo-triangles with u,v,w as the convex vertices is ©(n?).

Proof: This time we begin with the upper bound, which is an easy construction shown in Figure 5
(left). All points of P are placed on a circular arc centered at w. There are only O(n) choices
for the chain Ci,,, only O(n) choices of the chain C,,,, and given these choices, the chain C,,
is completely specified since we count only empty pseudo-triangles. The quadratic upper bound
follows.

Next we prove the lower bound. We need to show that any set P gives Q(n?) (empty) pseudo-
triangles. Let (p;,p;) be any pair of points from P. If £(p;, p;) does not intersect v then we assign
the pair to wo. Similarly, if ¢(p;,p;) does not intersect 7w then we assign the pair to 7w, and if
{(pi,p;) does not intersect ww then we assign the pair to ww. Due to non-degeneracy, we assign
each pair from P to exactly one side of Auvw.

By symmetry and the pigeon-hole principle we may assume that Q(n?) pairs of points are
assigned to wv. Make each pair ordered so that up;, p;p;,p;0 is a concave chain that does not
self-intersect. Let ¢ = £(u, p;) N £(v,p;), see Figure 5 (right), and let ¢’ be infinitesimally above
q. Then an empty pseudo-triangle exists that excludes the points of P N Auvq’ via the chain
Cyv, that excludes the points of P N Avwq’ via the chain Cy,,, and that excludes the points of
PN Auwg' via the chain Cy,,. Furthermore, up; and vp; are the extreme edges of Cy,. Hence, for
any other pair (p;, p,) assigned to wv we get a different pseudo-triangle. Since Q(n?) edges were
assigned to v, there are Q(n?) different pseudo-triangles. O

Note that the non-degeneracy assumption made previously is essential. If all points of P lie
on a line that also passes through one convex vertex, then there are only O(n) different empty
pseudo-triangles.



3.1.2 Star-shaped pseudo-triangles

Interestingly, the number of empty star-shaped pseudo-triangles does not vary with P, asymptot-
ically, and is always quadratic. The lower-bound proof of Theorem 2 generates only star-shaped
pseudo-triangles, because ¢’ is always in the kernel. So the minimum number of empty shar-shaped
pseudo-triangles is Q(n?). It remains to prove that the mazimum number of empty star-shaped
pseudo-triangles is also O(n?).

Lemma 1 Given three points u,v,w and a set P of n points inside Auvw, the maximum number
of empty star-shaped pseudo-triangles with u,v,w as the conver vertices is O(n?).

Proof: Consider the set of 3n lines defined by one point of P and one point of {u,v,w}, see
Figure 6. These lines form an arrangement of quadratic size. Let ¢ be any point inside a cell

Figure 6: Always O(n?) star-shaped pseudo-triangles.

of the arrangement. If we assume that ¢ is in the kernel of the empty pseudo-triangle, then the
pseudo-triangle is completely determined: all points of P N Auwvg are excluded via the chain Cy,,
and the analogous statement holds for PN Avwg and PN Auwq. By the choice of lines, no matter
where ¢ lies in its cell, the subsets PN Auvg, PN Avwg, and PN Auwq are the same. Since there
are O(n?) combinatorially distinct positions for g, the lemma follows. O

Theorem 3 Given three points u,v,w and a set P of n points inside Auvw, the minimum and
mazimum number of empty star-shaped pseudo-triangles with w,v,w as conver vertices is O(n?).

3.2 Pseudo-triangles in point sets

We discuss the case where the convex vertices are not given in advance. The results in the previous
section give rise to some easy results for this case.

Theorem 4 Given a set P of n points in the plane, the mazimum number of empty pseudo-
triangles is ©(n®).

Proof: The upper bound follows by taking all triples of P as u, v, and w and using the result of
Theorem 1.

The lower bound follows by taking the construction of Theorem 1, using only n/2 points inside
Auvw, and replacing u, v, and w by n/6 points each. w is replaced by n/6 points on a horizontal
line, very closely spaced and at w. Similarly, v and v are replaced by n/6 points each, and on
lines that make angles of 60 degrees (for v) and —60 degrees (for u) with the z-axis. O

The same proof adaptations give the result on the maximum number of star-shaped pseudo-
triangles. We simply state the result:



Theorem 5 Given a set P of n points in the plane, the mazimum number of empty star-shaped
pseudo-triangles is ©(n®).

We will give one more result, namely that any point set gives Q(n?) different empty star-shaped
pseudo-triangles. It completes the study of the number of empty pseudo-triangles, since a point
set in convex position gives only O(n?) different pseudo-triangles.

Theorem 6 Given a set P of n points in the plane, the minimum number of empty pseudo-
triangles (star-shaped or arbitrary) is ©(n?).

Proof: We need to prove only two results: there is a set of n points that gives O(n®) empty
(not necessarily star-shaped) pseudo-triangles, and any point set gives Q(n?) empty star-shaped
pseudo-triangles. For the former claim, simply take a set of n points in convex position. For the
latter claim, take any three points p;, p;, and p, of P. We will show that an empty star-shaped
pseudo-triangle exists with p;, p;, and pj, as the convex vertices. Take any point ¢ (not from the in-
put) in the interior of Ap;p;pr, and so that p;q, D;q, and Prg do not contain any point of P besides
Di, p; and py, themselves. Consider the pseudo-triangle that excludes any points of PN Ap;p;q via
chain Cy, p,, any points of P N Ap;prq via chain Cp, p, , and any points of P N Apyp;q via chain
Cp,.p:- Clearly this gives a pseudo-triangle with p;, p;, and p, as the convex vertices and ¢ in the
kernel. All (%) choices of p;, p;, and py, give different pseudo-triangles. O

4 Computing Optimal Empty Pseudo-Triangles

In this section we study the algorithmic problem of computing an empty pseudo-triangle that is
optimal with respect to its perimeter or its area. We consider both minimization and maximization
for each. As before, we first discuss the case where the three convex vertices are fixed, and then
we proceed with the case where they are not.

4.1 Optimal empty pseudo-triangles with given corners

Given three points u, v, and w and a set P of n points inside Auvw, we show how to determine
an optimal pseudo-triangle that has u, v, and w as its convex vertices, its other vertices at points
of P, and no points of P inside.

Recall from the proof of Theorem 1 that three points p;,p;, pr € P define at most one empty
pseudo-triangle, if we assume that the edges up;, Up; and wpy, are the first edges of the chains
Chuvs Cow, and Cyy, respectively. This observation immediately leads to an O(n?) time algorithm:
Presort the points by z-coordinate, enumerate over all triples p;, p;, and pg, and determine if an
empty pseudo-triangle exists for that triple, using the cases from the proof of Theorem 1. The
pseudo-triangle for each triple can be generated in linear time with a Graham scan convex hull
algorithm [8], due to presorting. Also due to presorting we can determine emptiness in linear time
by a simultaneous sweep over the point set and the pseudo-triangle. Finally, the area or perimeter
can be computed in linear time as well.

We can improve this method to run in O(n?) time by enumerating all possibilities in a clever
way. Essentially, we will fix only p; and p;, and handle all possibilities for pj in linear time
altogether. This is possible because the total summed change of consecutive pseudo-triangles that
we test is only linear instead of quadratic.

Let us fix p; and p; and assume that @p; is an edge of Cy,, and 7p; is an edge of Cy,, (observe
that now p; is on Cyy, and not on Cy,, as in the proof of Theorem 1). All points of P strictly
below both ¢(u,p;) and ¢(v,p;) must be on or below the chain Cy,; hence, C,, is determined
completely. Let P’ be the subset of points of P that lie above or on ¢(u,p;) or £(v,p;). Assume
that their counterclockwise sorted order around w is p1,...,pm. For any empty pseudo-triangle
with p; and p; as specified, a point py, exists such that all points left of or on ¢(w, pi) are on or left



of Cyw, and all points right of or on ¢(w, px+1) are on or right of C\,,,. This empty pseudo-triangle
includes the edges wpy, on Cy,, and Wpgr11 on Cyy,. Observe that i <k < k+1 < j, otherwise the
pseudo-triangle is not empty, not convex, or self-intersecting. Furthermore, if p; lies above £(v, p;)
or p; lies above ¢(u,p;), then a certain triangular region inside Auvw must be empty of points in
P, otherwise no empty pseudo-triangle of the specified type can be constructed. We conclude that
there are at most linearly many choices for the chain C,, that include @wp;, and C,,, is determined
if we fix pg.

In the code below, we use £(w, p)'!* and £(w,p)" 8" to denote the half-plane to the left or right
of {(w,p), respectively. We use £(u,p)~, £(u,p)*, £(v,p)~, and £(v,p)T for the half-planes below
or above the corresponding lines.

Algorithm Test-Pair

Input: A set P of n points inside Auvw, and two points p;,p; € P.

Output: TRUE if and only if some empty pseudo-triangle exists with up; as an edge of C,, and
vp; as an edge of Cyy.

if ((w,p;) Nvp; # 0 or £(w,p;) Nup; # 0 return FALSE

if ((u,pi)~ NL(v,p;)T NL(w,p;)'*™* N P # () return FALSE

if L(u,pi)t Ne(v,p;)~ NL(w,p;)" 8" N P # () return FALSE

return TRUE

=L

We consider all choices of pi with £ > ¢ and the concave chains Cy,, they determine. The
union of these chains is a graph G of different concave paths that connect v and w. The vertices
of G include u, w, and the points of P’ that lie inside the wedge above ¢(u, p;) and to the right of

Lemma 2 If we remove w and all edges incident to it from G, we obtain a planar embedding of
a tree.

Proof: Take G, remove w and all incident edges, and direct all remaining edges towards u. Let €
be any edge of G. The directed supporting line of € has u and w to its right, otherwise the chain
that includes € is not concave. Assume that two edges € and f of G exist that intersect. Assume
without loss of generality that f intersects € from € ’s right to € ’s left. Then any concave chain
Cuw that includes € cannot have the destination endpoint of f on it or to its left (recall that chains
are undirected). Hence, this endpoint of f must be on or right of Cy,,. But then the chains Cy.,
and C,, must intersect (using the fact that w is to the right of the directed supporting line of &). [

We denote the tree referred to in the lemma above by T;(u), and we let u be the root. It can
be computed with a simple incremental algorithm, see the left part of Figure 7:

Algorithm Rooted-Tree
Input: Vertex u, point set P’ sorted counterclockwise around w, and point p; € P’.
Output: A tree T;(u).
p— uand g — p;
k—i+1
while k < j and py is above ¢(u, p;)
Let v be the ray directed from p towards ¢
while py, is to the right of ~
q < p, and p < the parent of p in T;(u)
~ is the ray directed from p towards q
Ti(u) « Ti(u) UDrq
p«—qand q <+ pr and k — k+1
return T;(u)

= S Al el o

e



Figure 7: The tree T;(u) shown with white points in the left figure. The tree T;(v) shown with
white points in the right figure, using the same set of points.

Figure 8: The special points p; and pjs, and the points from P’ present in both trees are shown
as white points.

Assume that we are interested in the minimum perimeter empty pseudo-triangle. From the
root towards the leaves, we compute and store with each node (point) the Euclidean length of the
path from that node to u. For each node, we then add the Euclidean distance from that node to
w. By doing this, we have the length of the concave chain C,, stored with each node, if that node
is chosen as pg.

A similar algorithm constructs the tree T;(v) consisting of edges of chains Ci,, that end with
vp;. It is shown at the right in Figure 7. Again we compute and store the chain lengths with each
node, if that node is chosen as pg11.

Not all points of P’ occur in both trees. Let j’ be such that p; is the point of P’ with lowest
index that lies below ¢(u,p;), see Figure 8. If no such point exists, we let j/ = j. So p; is the
point where the tree construction of T;(u) halts. Similarly, let i’ be such that p; is the point of
P’ with highest index that lies below £(v,p;), or i’ = . Then we observe:

Lemma 3 An empty pseudo-triangle exists with wWpr on Cyuy and Wpgr1 on Cyy if and only if
P<k<k+1<j.

Our algorithm is therefore as follows:

Algorithm Shortest-Pseudo-Triangle

Input: A set P of n points inside a triangle Auvw.

Output: An empty pseudo-triangle with minimum perimeter

1. Sort P counterclockwise in angular order around w

2. for all choices of p; and p; for which Test-Pair returns TRUE

3. Select the subset of points below ¢(u,p;) and below £(v,p;) and compute Cy,



4 Determine P’ and compute T;(u) and T;(v) with Rooted- Tree

5 for k «— 1 to j' —1

6. Locate py in T;(u) and pg41 in T;j(v) and add the stored values,
7 maintaining the minimum sum found so far

8. return the minimum perimeter empty pseudo-triangle

We analyze the running time of the algorithm Shortest-Pseudo-Triangle. The outer loop runs
over O(n?) choices. Test-Pair trivially takes linear time. C,, can be computed in linear time
using the sorted order of points around w, ignoring those above £(u,p;) or above ¢(v,p;). The
sorted sequence for P’ can be extracted from the sorted sequence of P in linear time as well. The
locations of py in T;(u) and pry1 in T;(v) can be found in linear time overall, by traversal from
the previous locations (every tree edge is traversed at most twice).

It remains to show that the trees T;(u) and T;(v) can be computed in linear time as well. The
only time when adding the next point py to the tree may take more than constant time is when
Pk is to the right of v several consecutive times. However, each time, there is one node of the
tree T;;(u) that will not be encountered again in the rest of the algorithm (namely ¢). Hence, the
overall cost of these steps is still linear. We can compute all lengths in linear time using a simple
tree traversal from the root u towards the leaves.

The adaptations needed to compute the maximum perimeter, minimum area, or maximum
area empty pseudo-triangle are straightforward. If we are interested in the area measure, we store
for each node the area of the convex hull of the path from that node to the root, instead of the
length of that path.

Theorem 7 Given n points inside a triangle, an empty pseudo-triangle with minimum or maxi-
mum perimeter, or minimum or mazimum area can be computed in O(n>) time using linear space.

4.2 Optimal empty pseudo-triangles in point sets

We now discuss the case where the three convex vertices are not given in advance, but can be
chosen freely from a set P of n points in the plane. Recall that the maximum possible number
of empty pseudo-triangles in this case is ©(n%). This leads to a straightforward adaptation of our
algorithms to this case: Simply take all possible triples of points of P as the convex vertices of the
pseudo-triangles and apply the appropriate algorithm. This obviously increases the running time
by a factor of O(n?) in each case, without influencing the space requirement.

Theorem 8 Given n points in the plane, an empty pseudo-triangle with minimum or maximum
area, or minimum or mazimum perimeter can be computed in O(n®) time using linear space.

However, with a simple observation we can drastically reduce the running times for the two
minimization problems, as we will show next. We start with minimizing the perimeter.

Lemma 4 Given a set of points in the plane, any empty pseudo-triangle with the minimum
perimeter is a triangle.

Proof: Let 7 be a minimum perimeter pseudo-triangle with more than three vertices on its
boundary. We can triangulate 7 and obtain empty triangles in 7 with smaller perimeter, a con-
tradiction. O

We can use a divide-and-conquer approach similar to the well-known closest pair algorithm to
find the closest triple of points. We recursively divide the point set by a vertical line into two
equal-size parts, until the subsets have size < 5. The merge step is as follows: Let d1,d2 be the
minimum perimeter length on each side of a dividing line ¢, and let § = min{d1,d>}. We need to
check all points inside a strip of width §/2 to the left and right of ¢. Following a similar argument
as for finding the closest pair, we can show that each triple of points, not all on the same side of ¢,
must lie in a § X § rectangle, horizontally centered at ¢, if they form a triangle with perimeter less

10



than §. Inside such a rectangle, there can be at most 16 points, hence, we only need to examine a
constant number of possible triangles for each point inside the strip. This leads to a running time
of O(nlogn). We refer to the book by Cormen et al. [7] for further details of the algorithm.

Theorem 9 Given n points in the plane, an empty pseudo-triangle with minimum perimeter can
be computed in O(nlogn) time using linear space.

Next we discuss minimizing the area. We can use the same argument as above to prove that
we are looking for a triangle.

Lemma 5 Given a set of points in the plane, any empty pseudo-triangle with the minimum area
is a triangle.

Now we can use a result of Edelsbrunner and Guibas [10] and conclude:

Theorem 10 Given n points in the plane, an empty pseudo-triangle with minimum area can be
computed in O(n?) time using linear space.

5 Conclusions

First, we have given tight bounds on the minimum and maximum number of empty pseudo-
triangles that either must be star-shaped or may be arbitrary. The constructions and proofs are
simple and elegant. An open question is whether pseudo-triangles that are 9-gons are necessary to
have Q(n?) and Q(n%) empty pseudo-triangles in Theorems 1 and 4, or whether smaller complexity
pseudo-triangles can also be used. Second, we have given algorithms to find optimal empty pseudo-
triangles with respect to minimum and maximum perimeter or area. It would be interesting to
improve the O(n%) time algorithms for the maximization problems.
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