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Abstract

Computing all possible roofs over a given ground plan is a common task in automatically reconstruct-
ing a three dimensional building. In 1995, Aichholzer et al. proposed a definition of a roof over a simple
polygon P in the xy-plane as a terrain over P whose faces are supported by planes containing edges of
P and making a dihedral angle π

4
with the xy-plane. This definition, however, allows roofs with faces

isolated from the boundary of P and local minimum edges inducing pools of rainwater. Very recently,
Ahn et al. introduced “realistic roofs” over a rectilinear polygon with n vertices by imposing two ad-
ditional constraints under which no isolated faces and no local minimum vertices are allowed. Their
definition is, however, restricted and excludes a number of roofs with no local minimum edges. In this
paper, we propose a new definition of realistic roofs over a rectilinear polygon that corresponds to the
class of roofs without isolated faces and local minimum edges. We investigate the geometric and com-
binatorial properties of realistic roofs and show that the maximum possible number of distinct realistic
roofs over a rectilinear n-gon is at most 1.3211m

(
m
bm

2
c
)
, where m = n−4

2
. We also present an algorithm

that generates all combinatorial representations of realistic roofs.

1 Introduction1

A common task in automatically reconstructing a three dimensional city model from its two dimensional2

map is to compute all the possible roofs over the ground plans of its buildings [4, 5, 11, 9, 10, 13]. For3

instance, Figure 1(a) shows a ground plan of a building in a perspective view, which is the union of two4

overlapping rectangles. The roof in Figure 1(b) can be constructed by building a roof over each rectangle5

and taking the upper envelope of the two roofs. The roof in Figure 1(c) can be constructed by shrinking the6

ground plan at a constant speed while moving it along vertically upward at a constant speed. Note that the7

vertical projection of the roof coincides with the the straight skeleton of the ground plan [2, 3].8

For some applications, a correct or reasonable roof over a building is chosen from its set of possible roofs9

by considering some additional information such as its satellite images.10

Aichholzer et al. [2] defined a roof over a simple (not necessarily rectilinear) polygon in the xy-plane as11

a terrain over the polygon such that the polygon boundary is contained in the terrain and each face of the12

terrain is supported by a plane containing at least one polygon edge and making a dihedral angle π
4 with13

the xy-plane. This definition, however, is not tight enough that it allows roofs with faces isolated from the14

boundary of the polygon (Figure 2(a)) and local minimum edges (Figure 2(b)) which are undesirable for15

some practical reasons – for example, a local minimum edge serves as a pool of rainwater, which can cause16

damage to the roof. Note that a pool of rainwater on a roof always contains a local minimum edge or vertex.17

18
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Figure 1: A rectilinear ground plan and two different roofs over the plan in a perspective view.
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Figure 2: (a) A roof with isolated faces f and f ′. (b) A roof with a local minimum edge e. (c) Not a realistic
roof according to Definition 1; vertex u has no adjacent vertex that is lower than itself.

1.1 Related work19

Brenner [5] designed an algorithm that computes all the possible roofs over a rectilinear polygon, but no20

polynomial bound on its running time is known. Recently, Ahn et al. [1] introduced “realistic roofs” over a21

rectilinear polygon P with n vertices by imposing two additional constraints to the definition of “roofs” by22

Aichholzer et al. [2] as follows.23

Definition 1 ([1]) A realistic roof over a rectilinear polygon P is a roof over P satisfying the following24

constraints.25

C1. Each face of the roof is incident to at least one edge of P .26

C2. Each vertex of the roof is higher than at least one of its neighboring vertices.27

They showed some geometric and combinatorial properties of realistic roofs, including a connection to the28

straight skeleton [2, 3, 7, 6, 8]. Consider a roof R∗(P ) over P constructed by a shrinking process, where all29

of the edges of P move inside, being parallel to themselves, with the same speed while moving upward along30

the z-axis with the same speed. Aichholzer et al. [2] showed that R∗(P ) is unique and its projection on the31

xy-plane is the straight skeleton of P . Ahn et al. [1] showed that R∗(P ) is the pointwise highest realistic roof32

over P . From the fact that R∗(P ) does not have a “valley”, Ahn et al. [1] suggested a way of constructing33

another realistic roof over P different to R∗(P ) by adding a set of “compatible valleys” to R∗(P ). They34

showed that the number of realistic roofs lies between 1 and
(
m
bm2 c

)
where m = n−4

2 , and presented an output35

sensitive algorithm generating all combinatorial representations of realistic roofs over P in O(1) amortized36

time per roof, after O(n4) preprocessing time.37

1.2 Our results38

Constraint C1 in Definition 1 was introduced to exclude roofs with isolated faces and constraint C2 was39

introduced to avoid pools of rainwater. However, C2 is restricted and excludes a large number of roofs40

containing no local minimum edges. For example, the roof in Figure 2(c) is not realistic according to41
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Definition 1 though rainwater can be drained well along uv. Therefore, Definition 1 by Ahn et al. [1] does42

describe only a subset of “realistic” roofs.43

We introduce a new definition of realistic roofs by replacing C2 of Definition 1 with a relaxed one that44

excludes roofs with local minimum edges only.45

Definition 2 A realistic roof over a rectilinear polygon P is a roof over P satisfying the following constraints.46

C1. Each face of the roof is incident to at least one edge of P .47

C2 ′. For each roof edge uv, u or v is higher than at least one of its neighboring vertices.48

From now on, we use Definition 2 for realistic roofs unless stated explicitly. Our definition corresponds to49

the class of roofs without isolated faces, local minimum edges and local minimum vertices exactly.50

Our main results are threefold:51

1. We provide a new definition of “realistic roofs” that corresponds to the real-world roofs and investigate52

geometric properties of them.53

2. We show that the maximum possible number of realistic roofs over a rectilinear n-gon is at most54

1.3211m
(
m
bm2 c

)
, where m = n−4

2 .55

3. We present an algorithm that generates all combinatorial representations of realistic roofs over a56

rectilinear n-gon. Precisely, it generates a roof whose vertices are all open, that is, every vertex is57

higher than at least one of its neighboring vertices in O(1) time after O(n4) preprocessing time [1]. For58

each such roof R, it generates O(1.3211m) realistic roofs in time O(m1.3211m) by adding edges on R.59

2 Preliminary60

For a point p in R3, we denote by x(p), y(p), and z(p) the x-, y-, and z-coordinate of p, respectively. We61

denote by p the orthogonal projection of p onto the xy-plane. A line through p parallel to the x-axis, and62

another line through p parallel to the y-axis together divide the xy-plane into four regions, called quadrants63

of p, each bounded by two half-lines. For a point q in a roof R, let D(q) be the axis-parallel square centered64

at q with side length 2z(q).65

We denote by ∂P the boundary of P and by edge(f) the edge of ∂P incident to a face f of a roof.66

Lemma 1 ([1]) Let R be a roof over a rectilinear polygon P . The followings hold.67

(a) For any point p ∈ R, z(p) is at most the L∞ distance from p to its closest point in ∂P . Therefore, we68

have D(p) ⊆ P .69

(b) For each edge e of P , there exists a unique face f of R incident to e.70

(c) Every face f of R is monotone with respect to the line containing edge(f).71

Consider the boundary ∂f of f . According to property (c) of Lemma 1, ∂f consists of exactly two chains72

monotone with respect to the line containing edge(f).73

An edge e of a realistic roof R over P is convex if the two faces incident to e make a dihedral angle below74

R less than π, and reflex otherwise. A convex edge is called ridge if it is parallel to the xy-plane. A reflex75

edge is called a valley if it is parallel to the xy-plane.76

3 Valleys of a Realistic Roof77

In this section, we investigate local structures of realistic roofs. Ahn et al. [1] showed five different configu-78

rations of end vertices that a ridge can have under Definition 1. They also showed that vertices which are79

not incident to a valley or a ridge are degenerated forms of valleys or ridges. Since replacing constraint C280

with C2 ′ does not affect ridges, we care about only valleys.81

We define three types of valleys and describe their structures that a realistic roof can have. We call a82

vertex of a roof open if it is higher than at least one of its neighboring vertices connected by roof edges, and83
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closed otherwise. We call a valley open if both end vertices are open, half-open if one end vertex is open and84

the other is closed, and closed if both end vertices are closed. For instance, the valley uv in Figure 2(c) has85

an open end vertex v and a closed end vertex u, and therefore it is half-open.86

By Definition 2, a realistic roof can contain open and half-open valleys but it does not contain closed87

valleys. Ahn et al. [1] showed that each open valley always has the same structure as st in Figure 2(c). More88

specifically, they first showed that there are only 5 possible configurations near an end vertex of a valley89

which satisfy the roof constraints such as the monotonicity of a roof, and the slope and orientations of faces90

as illustrated in Figure 3. Then they showed that an open valley must have both end vertices of configuration91

(v1) only and oriented symmetrically along the valley. Otherwise, an end vertex of the valley becomes a92

local minimum or a face f incident to the valley is not monotone with respect to the line containing edge(f)93

contradicting Lemma 1(c). They also observe that each end vertex of an open valley is connected to a94

reflex vertex of P by a reflex edge. We call such a reflex vertex a foothold of the open valley. Note that95

two footholds a and a′ of an open valley uv are opposite corners of Baa′ and Baa′ \ {a, a′} is contained in96

the interior of P , and uv coincides with the ridge of R∗(Baa′), where Baa′ denote the smallest axis-aligned97

rectangle containing a and a′ .98

v v v v v
rf cv rf

rf

rfcv

cv
cv cvcv

v′v′

(v1) (v2) (v3) (v4) (v5)

f f f f f

f ′
f ′f ′f ′ f ′

u
u

u
u u

Figure 3: Five possible configurations around a vertex u of a valley uv shown by Ahn et al. [1], where rf

denotes a reflex edge and cv denotes a convex edge. Each convex or reflex edge is oriented from the endpoint
with smaller z-coordinate to the other one with larger z-coordinate.

In the following we investigate the structure of a half-open valley that a realistic roof can have. It is not99

difficult to see that the open end vertex is always of configuration (v1); and any end vertex of the other100

configurations cannot have a lower neighboring vertex. We will show that every closed end vertex of a valley101

is always of configuration (v2). For this, we need a few technical lemmas.102

Lemma 2 Let uv be a valley and uv′ be a convex edge incident to u. Also, let ` be the line in the xy-plane103

passing through v and orthogonal to uv. Then the face f incident to both uv and uv′ has edge(f) in the104

half-plane of ` in the xy-plane not containing u.105

Proof. Figure 3 shows all possible configurations that an end vertex u of a valley uv has. Since uv′ is convex,106

v′ is strictly higher than u and uv′ makes an angle 45◦ with uv in all cases. Then the lemma follows from107

the monotonicity property (c) of Lemma 1.108

109

Imagine that a face f is incident to a valley uv and two convex edges one of which is incident to u and110

the other to v. This is only possible when both convex edges lie in the same side of the plane containing111

uv and parallel to the z-axis, because of the monotonicity of a roof, and the slope and orientations of faces.112

Since both convex edges make an angle 45◦ with uv in their projection on the xy-plane, f cannot have a113

ground edge by Lemma 2, that is, f is isolated.114

Lemma 3 Let uv be a half-open valley of a realistic roof where u is closed and v is open. Then v is of115

configuration (v1) and u is of configuration (v2).116

Proof. If u is of configuration (v3), then one of two faces incident to uv becomes isolated by Lemma 2. If117

u is of configuration (v5), then there always is another valley uv′ that is orthogonal to uv and has a closed118

corner at u of configuration (v3) as shown in Figure 3. Therefore one of faces incident to uv′ is isolated.119
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Assume now that u is of configuration (v4). Then there always is another valley uv′ orthogonal to uv.120

Therefore, we need to check two connected valleys uv and uv′ simultaneously. Figure 4 illustrates all possible121

combinations of these two valleys. For cases (a) and (b), there is an isolated face incident to uv or uv′. For122

case (c), let f and f ′ be the faces incident to uv and uv′, respectively, sharing the reflex edge incident to u123

as shown in Figure 4(c). By Lemma 2, edge(f) must lie in the top right quadrant of u and edge(f ′) must lie124

in the bottom left quadrant of u in the xy-plane. This is, however, not possible unless f or f ′ violates the125

monotonicity property (c) of Lemma 1.

rf

cv

(a) (b) (c)

rf cv cv

rf
cv

rf cv rf

rf

cv
cv

rf cv rf

v u v u v u

v′ v′

v′
f

f ′

Figure 4: Three possible combinations around a (v4) type vertex.

126

The only remaining closed end vertex is of configuration (v2). Figure 5 shows a half-open valley uv with127

u of configuration (v1) and v of configuration (v2).128

129

rf3
rf1

v

a1

a2

a3

rf4
rf2

rf5

u

s

Figure 5: A half-open valley uv must be connected to three reflex vertices a1, a2 and a3 of P via five reflex
edges. We call the vertex s which is incident to rf1 and rf4 the peak point of uv.

Now we are ready to describe the structure of a half-open valley. In the following, we show that a half-130

open valley always has the same structure on a realistic roof as in Figure 5. Specifically, a half-open valley131

uv is associated with five reflex edges of the roof and three reflex vertices of P which have mutually different132

orientations. We call the three reflex vertices of P that induce a half-open valley the footholds of the valley.133

Open vertex v to foothold a2 Suppose that rf3 in Figure 5 is not connected to a reflex vertex of P .134

Then rf3 must be incident to another half-open valley u′v′, because a closed vertex of configuration (v2) is135

the only roof vertex that can have such a reflex edge. By Lemma 3, there are four possible cases and they136

are illustrated in Figure 6.137

In case (a), face f1 is isolated by the monotonicity property (c) of Lemma 1. In case (b), by the138

monotonicity of f1, edge(f1) must lie in the top left quadrant of u in the xy-plane. This implies that139

edge(f2) must lie in the top right quadrant of u, and edge(f3) must lie in the bottom right quadrant of u′ in140
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Figure 6: Four possible cases of two half-open valleys, uv and u′v′, connected by reflex edge u′v.

the xy-plane. However, by the monotonicity of f4, edge(f4) must lie in the top left quadrant of u′, and this141

is not possible unless f3 or f4 violates the monotonicity property (c) of Lemma 1. In case (c), edge(f1) must142

lie in the top left quadrant and edge(f3) must lie in the bottom left quadrant of u in the xy-plane. Then f1143

or f3 violates the monotonicity property. In case (d), edge(f1) must lie in the bottom right quadrant and144

edge(f2) must lie in the top left quadrant of u′ in the xy-plane. This is, however, not possible unless f1 or145

f2 violates the monotonicity property. Therefore, v must be connected to a reflex vertex a2 of P via rf3.

(a) (b)

u′
v

f1 f1

f2

f3
rf1 rf1

u vu

v′u′v′

Figure 7: When rf1 is connected to either (a) an open valley u′v′ or (b) a half-open valley u′v′.

146

Closed vertex u to footholds a1 and a3 We show that u is connected to foothold a1 via two reflex147

edges rf1 and rf4. Note that the end vertex of rf1 other than u is an end vertex (of configuration (v1)) of148

a valley or a ridge.149

When rf1 is connected to an open valley u′v′, both uv and u′v′ are incident to a face f1, which is150

isolated. See Figure 7(a). If u′v′ is a half-open valley, then one of two faces incident to u′v′ violates the151

monotonicity (c) of Lemma 1. See Figure 7(b).152

When rf1 is connected to a ridge, there is another reflex edge rf4 incident to the ridge. Suppose that153

rf4 is not connected to a reflex vertex of P . Then rf4 must be incident to another half-open valley u′v′.154

Figure 8 shows all four possible cases, but none of them can be constructed in a realistic roof: either a face155

is isolated (cases (a) and (c)) or at least one face violates the monotonicity (c) of Lemma 1 (cases (b) and156

(d)). Therefore, u must be connected to a reflex vertex a1 of P via two reflex edges rf1 and rf4.157

In a similar way, we can show how u is connected to foothold a3 via two reflex edges rf2 and rf5.158

Lemma 4 Let uv be a half-open valley where u is closed and v is open. Then uv is associated with three159

reflex vertices of P that have mutually different orientations as shown in Figure 5.160

4 Realistic Roofs with Half-Open Valleys161

From Lemma 4, we know that a half-open valley is associated with three reflex vertices that have mutually162

different orientations. In the following we investigate a condition under which three reflex vertices a1, a2,163

and a3 with mutually different orientations can induce a half-open valley.164
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Figure 8: When rf4 is connected to another half-open valley u′v′.

Let dx(i, j) := x(ai)−x(aj) and dy(i, j) := y(ai)−y(aj). Without loss of generality, we assume that these165

three vertices are oriented and placed as in Figure 5. That is, we have dx(3, 1), dx(2, 3), dy(1, 2), dy(3, 1) > 0.166

We define two squares and one rectangle in the xy-plane to determine whether these three reflex vertices167

form a half-open valley. Let r1 be the square with a1 on its top left corner and side length dx(3, 1). Let r2 be168

the rectangle with a2 on its bottom right corner with height dy(1, 2) and width dy(1, 2) + dx(2, 3). Finally,169

let r3 be the square with a3 on its top right corner and side length dy(3, 2). Note that these three rectangles170

overlap each other and have a nonempty common intersection.171

We define three rectilinear subpolygons of P along r1, r2, and r3 as follows. Let P ′ := P \ (r1 ∪ r2 ∪ r3).172

Let P1 denote the union of r1 ∪ r2 and the components of P ′ incident to the portion of ∂P from a1 to a2173

in a counterclockwise direction (Figure 9(a)). Let P2 denote the union of r2 ∪ r3 and the components of P ′174

incident to the portion of ∂P from a2 to a3 in a counterclockwise direction (Figure 9(b)). Let P3 denote the175

union of r1 ∪ r3 and the components of P ′ incident to the portion of ∂P from a3 to a1 in a counterclockwise176

direction (Figure 9(c)).

a1

a3
r3

r1

P1

(a) (b) (c)

a1

a3

a2

u v

r3

r2

r1

a1

a3
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u v

r3

r2

r1

P3

P2

a2

u

r2

v

s

t

s

t

s

t

Figure 9: Dividing P into three rectilinear subpolygons, P1, P2 and P3, along a half-open valley uv.

177

Lemma 5 There is a realistic roof with a half-open valley induced by reflex vertices a1, a2 and a3 of P if178

and only if (ri \ ai) ∩ ∂P = ∅, for all i ∈ {1, 2, 3}.179
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Proof. Let uv be the half-open valley of a realistic roof R induced by a1, a2 and a3. We know that uv180

is connected to a1, a2 and a3 via five reflex edges as shown in Figure 9. Note that r1 = D(s), r3 = D(t),181

and r2 =
⋃
p∈uvD(p). Therefore, ri ⊆ P for all i ∈ {1, 2, 3}. Let Sε denote the set of points on R in the182

ε-neighborhood of s for small ε > 0. By property (a) of Lemma 1, we have D(p) ⊆ P for every p ∈ Sε. Since183

s is an end vertex of a ridge and it is incident to two reflex edges,
⋃
p∈Sε

D(p) contains ∂r1 in its interior,184

except a1 and the top right corner of r1. The top right corner of r1 coincides with the top right corner of185

D(u), and there is a point q on R near u such that D(q) contains the top right corner of r1 in its interior.186

By using a similar argument, we can show that (r3 \ a3)∩ ∂P = ∅. For r2, let Uε denote the set of points on187

R in the ε-neighborhood of uv for small ε > 0. Since uv is a half-open valley,
⋃
p∈Uε

D(p) contains ∂r2 in its188

interior, except a2.189

Now assume that (ri \ ai) ∩ ∂P = ∅ for all i ∈ {1, 2, 3}. We will show that the upper envelope of190

R∗(P1) ∪ R∗(P2) ∪ R∗(P3) forms a realistic roof R over P which contains the unique half-open valley uv191

induced by a1, a2 and a3. Since P1 and P2 both contain r2, R∗(P1) and R∗(P2) intersect along a2v and192

uv. Likewise, P2 and P3 both contain r3, so R∗(P2) and R∗(P3) intersect along a3t and ut. Finally, P1 and193

P3 both contain r1, so R∗(P1) and R∗(P3) intersect along a1s and us. Therefore uv and its five associated194

reflex edges appears on R.195

It remains to show that every face f on the upper envelope of R∗(P1) ∪R∗(P2) ∪R∗(P3) is not isolated196

and monotone along the line containing edge(f). Since all faces in R∗(Pi), for all i ∈ {1, 2, 3} satisfy the197

condition, it suffices to consider only faces incident to uv and its five associated reflex edges.198

Consider the face f1 that is incident to uv, rf1 and rf4. Since r1 touches ∂P only at a1, there exists a199

rectangle r′1 ⊆ P1 that contains r1 and whose boundary contains the top side of r1 only. Since r2 touches200

∂P only at a2, there exists a rectangle r′2 ⊆ P1 that contains r2 and whose boundary contains the top and201

right sides of r2 only. See Figure 10 (a). Then f1 has the horizontal edge of P incident to a1 as edge(f1).202

Likewise, there exist rectangles r′2, r
′
3 ⊆ P2 such that r2 ⊂ r′2 and r3 ⊂ r′3, and therefore face f2 incident203

to uv, rf2 and rf3 has the horizontal edge of P incident to a2 as edge(f2). See Figure 10 (b).204

Finally, there exist rectangles r′1, r
′
3 ⊆ P3 such that r1 ⊂ r′1 and r3 ⊂ r′3, and therefore face f3 incident205

to rf1, rf2 and rf5 has the vertical edge of P incident to a3 as edge(f3). See Figure 10 (c).206

Clearly, face fi is monotone with respect to edge(fi) for all i ∈ {1, 2, 3}.207

a1

a2

u v

P1
P3

a1

a3r′3

r′1

a3

P2

r′3

u v

r′1

r′2 r′2 u

f1

a2

f2

f3

(a) (b) (c)

Figure 10: A half-open valley uv can be constructed by taking upper envelope of R∗(P1)∪R∗(P2)∪R∗(P3).
(a) Face f1 has the horizontal edge incident to a1 as edge(f1), (b) face f2 has the horizontal edge incident
to a2 as edge(f2), and (c) face f3 has the vertical edge incident to a3 as edge(f3).

208

Assume that three reflex vertices of a candidate triple are oriented and placed as depicted in Figure 5.209

If three reflex vertices a1, a2 and a3 satisfy the conditions in Lemma 5, we call (a1, a2, a3) a candidate triple210

of footholds for uv, and
⋃
i∈{1,2,3} ri the free space of uv.211
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Compatibility Given candidate pairs and triples of footholds for open and half-open valleys, respectively,212

we need to check whether there is a realistic roof that contains these valleys. In some cases, there is no213

realistic roof that contains two given valleys because of the geometric constraints of realistic roofs. We say214

a pair of valleys are compatible if there is a realistic roof that contains them.215

We start with a lemma which states the compatibility between two open valleys.216

Lemma 6 ([1]) Let (a1, a2) and (a′1, a
′
2) be two candidate pairs of footholds for open valleys uv and u′v′,217

respectively. (a1, a2) and (a′1, a
′
2) are compatible if and only if Ca1a2∩Ca′1a′2 = ∅, where Ca1a2 := a1u∪uv∪va2218

and Ca′1a′2 := a′1u′ ∪ u′v′ ∪ va′2.219

There are two cases to consider: compatibility between two half-open valleys, and compatibility between220

an open valley and a half-open valley.221

Lemma 7 Let (a1, a2, a3) and (a′1, a
′
2, a
′
3) be candidate triples of footholds for two half-open valleys uv and222

u′v′. Two half-open valleys uv and u′v′ are compatible if and only if the free space of uv is contained in one223

of three rectilinear subpolygons of P defined by (a′1, a
′
2, a
′
3), and the free space of u′v′ is completely contained224

in one of three rectilinear subpolygons of P defined by (a1, a2, a3).225

Proof. Let Pi and P ′i , for i ∈ {1, 2, 3}, be the rectilinear subpolygons of P defined by (a1, a2, a3) and226

(a′1, a
′
2, a
′
3), respectively. We can assume that all a′i are contained in ∂Pi for some i ∈ {1, 2, 3}; otherwise, a227

roof edge associated with uv and a roof edge associated with u′v′ cross, for which there is no realistic roof228

containing uv and u′v′. This also implies that all ai are contained in ∂P ′i for some i ∈ {1, 2, 3}. Consider229

the case that all ai are contained in ∂P ′1, and therefore all a′i are contained in ∂P1. Assume to the contrary230

that the free space of uv is not contained in any of P ′1, P
′
2 and P ′3, as depicted in Figure 11(a). This implies231

that r1 intersects ∂P ′1 and y(a1)− y(a′1) < x(a3)− x(a1). Let s and s′ denote the two peak points of uv and232

u′v′, respectively. Let p be the point h ∩ (a′1s
′ ∪ s′u′ ∪ u′v′), where h is the plane through s and parallel to233

the yz-plane. Since y(s) < (y(a1) + y(a′1))/2, we have y(s) − y(p) < z(s) − z(p) and therefore the portion234

of R ∩ h from s to p must have an edge of slope larger than 1, which is not allowed in a realistic roof. The235

remaining two cases that all ai are contained in either ∂P ′2 or ∂P ′3 can also be shown to make uv and u′v′236

not compatible by using a similar argument.237

Suppose now that the free space of uv is contained in one of three rectilinear subpolygons of P defined238

by (a′1, a
′
2, a
′
3), and the free space of u′v′ is completely contained in one of three rectilinear subpolygons of P239

defined by (a1, a2, a3). We show how to construct a realistic roof with uv and u′v′. Without loss of generality,240

we assume that P1 contains a′1, a
′
2 and a′3. Let P11, P12 and P13 denote the rectilinear subpolygons of P1241

defined by (a′1, a
′
2, a
′
3). Now we have five rectilinear subpolygons P11, P12, P13, P2 and P3 of P . By taking242

the upper envelope of the roofs R∗(P11), R∗(P12), R∗(P13), R∗(P2) and R∗(P3), we can get a realistic roof243

which contains uv and u′v′.244

245

Lemma 8 Let uv be a half-open valley and let (a′1, a
′
2) be a candidate pair of footholds for an open valley246

u′v′. Two valleys uv and u′v′ are compatible if and only if the smallest axis-aligned rectangle containing a′1247

and a′2 does not cross the free space of uv properly.248

Proof. Let Pi, for i ∈ {1, 2, 3}, be the rectilinear subpolygons of P defined by the triple (a1, a2, a3) of249

footholds of uv. We can assume that a′1 and a′2 are contained in ∂Pi for some i ∈ {1, 2, 3}; otherwise, a250

roof edge associated with uv and a roof edge associated with u′v′ cross, for which there is no realistic roof251

containing uv and u′v′. Let B denote the smallest axis-aligned rectangle containing a′1 and a′2. If a′1 and a′2252

are contained in ∂P2 or ∂P3, then B does not cross the free space of uv properly.253

Suppose that a′1 and a′2 are contained in ∂P1 and B crosses the free space of uv properly, as depicted254

in Figure 11(b). Let p be the point h ∩ (a′1u
′ ∪ u′v′ ∪ v′a′2), where h is the plane through s and parallel to255

the yz-plane. Since y(s) < (y(a1) + y(a′1))/2, we have y(s)− y(p) < z(s)− z(p) and therefore the portion of256

R ∩ h from s to p must have an edge of slope larger than 1, which is not allowed in a realistic roof.257

Suppose now that B does not cross the free space of uv properly. We show how to construct a realistic258

roof with uv and u′v′. Ahn et al. [1] showed how to construct a realistic roof R over P ′ with a candidate259
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a′
1

a′
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a′
3

s′ s

P ′
1

r1

p

u v

u′ v′
p

Figure 11: (a) The free space of uv (gray) crosses ∂P ′1. Then we have y(s) − y(p) < z(s) − z(p), for
which we cannot construct a realistic roof. (b) The free space of uv crosses B properly. Then we have
y(s)− y(p) < z(s)− z(p), for which we cannot construct a realistic roof.

pair of footholds (a′1, a
′
2) for an open valley u′v′: Divide P ′ into two subpolygons by a chain a′1u′∪u′v′∪v′a′2260

and let P ′1 be the union of one subpolyon and B and P ′2 be the union of the other subpolygon and B; Then261

take the upper envelope of R∗(P ′1) ∪R∗(P ′2).262

Without loss of generality, we assume that P1 contains a′1 and a′2. Chain a′1u′ ∪ u′v′ ∪ v′a′2 divides P1263

into two subpolygons. Let P11 be the union of one subpolygon and B, and let P12 be the union of the264

other subpolygon and B. Then both P11 and P12 are rectilinear polygons. Now we have four rectilinear265

subpolygons P11, P12, P2 and P3 of P . By taking the upper envelope of the roofs R∗(P11), R∗(P12), R∗(P2)266

and R∗(P3), we can get a realistic roof which contains uv and u′v′.267

268

Let V be a set of candidate pairs of footholds and candidate triples of footholds. If every pair of elements269

of V satisfies Lemma 6 or Lemma 7 or Lemma 8, we can find a unique realistic roof R whose valleys270

correspond to V . Also, we call such V a compatible valley set of P . We conclude this section with the271

following theorem.272

Theorem 1 Let P be a rectilinear polygon with n vertices and V be a compatible valley set of k candidate273

pairs of footholds and l candidate triples of footholds with respect to P . Then there exists a unique realistic274

roof R whose valleys correspond to V . In addition, there exist k+2l+1 rectilinear subpolygons P1, . . . , Pk+2l+1275

of P such that276

1.
⋃k+2l+1
i=1 Pi = P .277

2. R coincides with the upper envelope of R∗(Pi)’s, for all i = 1, . . . , k + 2l + 1.278

5 The Number of Realistic Roofs279

We give an upper bound of the number of possible realistic roofs over P in terms of n. For this, we need a280

few technical lemmas.281

Lemma 9 Let (a1, a2, a3) be a candidate triple of footholds for a half-open valley, where a1 and a2 have282

opposite orientations. Then (a1, a2) is also a candidate pair of footholds.283
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Proof. The candidate triple (a1, a2, a3) admits a half-open valley uv. The free space of uv contains the284

smallest axis-aligned rectangle containing a1 and a2, so a1 and a2 admit an open valley.285

286

Lemma 10 Let (a1, a2, a3) be a candidate triple of footholds for a half-open valley uv, where a1 and a2287

have opposite orientations. If a candidate pair (a4, a5) of footholds for an open valley is compatible with288

(a1, a2, a3), then there is no half-open valley with footholds (a3, a4, a5).289

Proof. Without loss of generality, assume that the three reflex vertices a1, a2, a3 and the valley uv are290

oriented and placed as in Figure 12(a). By Lemma 8, both a4 and a5 must be contained in one of three291

rectilinear subpolygons P1, P2 and P3 of P defined by uv. Assume to the contrary that (a3, a4, a5) is a292

candidate triple of footholds for a half-open valley u′v′. There are four cases for (a4, a5) as follows.293

If a4, a5 ∈ ∂P3, there is only one possible configuration as depicted in Figure 12(b). By some careful294

case analysis, we have dx(3, 5) > dx(3, 4) > dy(3, 4), which makes a4 be contained in the interior of the free295

space of u′v′. In case that a4, a5 ∈ ∂P2, there is no possible configuration. Finally, consider the case that296

a4, a5 ∈ ∂P1. There are two possible configurations. When x(a5) < x(a4) < x(a1) as depicted in Figure 12(c),297

we have dx(3, 5) > dx(3, 1) > dy(3, 1), which makes a1 be contained in the interior of the free space of u′v′.298

When x(a5) < x(a1) < x(a4) as depicted in Figure 12(d), we have dy(3, 4) > dx(3, 1) > dy(3, 1), which again299

makes a1 be contained in the interior of the free space of u′v′.300

a1

a2

a3 a1

a2

a3 a1

a2

a3

a4

a5

a3

a1

∂P3
a5

a4

∂P1
∂P1

a5

a4

(a) (b) (c) (d)

∂P1

∂P3

∂P2u v

Figure 12: Illustration of the proof of Lemma 10. Gray regions are free spaces.

301

Based on the two previous lemmas, we give an upper bound on the number of realistic roofs over P .302

Theorem 2 Let P be a rectilinear polygon with n vertices. There are at most 1.3211m
(
m
bm2 c

)
distinct realistic303

roofs over P , where m = n−4
2 .304

Proof. Let R be a realistic roof over P with a half-open valley uv. By Lemma 9, we can get an open valley305

u′v′ induced by two footholds of uv that have opposite orientations. Therefore, we can get a new realistic306

roof by replacing uv with u′v′. By repeating this process, we can get a realistic roof R′ which does not307

contain any half-open valleys. It means that for any realistic roof R over P , there exists a unique realistic308

roof R′ which has no half-open valleys. We can get the number of distinct realistic roofs over P with two309

steps: counting the number of realistic roofs R′ over P which has no half-open valleys and counting the310

number of realistic roofs R which can be transformed to each R′ by replacing its half-open valleys with open311

valleys.312

Ahn et al. [1] gave an upper bound on the number of realistic roofs R′ over P which have no half-open313

valleys, which is
(
m
bm2 c

)
, where m = n−4

2 . We calculate the number of realistic roofs R over P corresponding314

to each R′. Suppose that R′ contains k open valleys, u1v1, u2v2, . . . , ukvk. P has m − 2k reflex vertices315

that are not used as footholds of these open valleys. Let us call these reflex vertices free vertices of R′. By316

Lemma 10, each free vertex can make a half-open valley with at most one open valley. Let xi, 1 ≤ i ≤ k, be317

the number of free vertices of R′ that can make a half-open valley with uivi. Then the number of realistic318
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roofs that can be transformed to R′ is at most (x1 +1)(x2 +1) · · · (xk+1), where x1 +x2 + . . .+xk ≤ m−2k.319

From the inequality of arithmetic and geometric means, we can get320

(x1 + 1)(x2 + 1) · · · (xk + 1) ≤
(x1 + x2 + . . .+ xk + k

k

)k
≤

(m− k
k

)k
=

(
(
m

k
− 1)

k
m

)m
.

For a positive real number x, we have sup{(x − 1)
1
x } ≈ 1.3210998, so ((mk − 1)

k
m )m < 1.3211m. Therefore,321

we can get at most 1.3211m different realistic roofs over P corresponding to each R′, and the total number322

of distinct realistic roofs over P is at most 1.3211m
(
m
bm2 c

)
.323

In the case of an orthogonally convex rectilinear polygon P , we can get a better upper bound on the number324

of realistic roofs over P . An orthogonally convex rectilinear polygon is a simple rectilinear polygon such that325

for any line segment parallel to any of the coordinate axes connecting two points lying within the polygon326

lies completely within the polygon. The boundary of an orthogonally convex rectilinear polygon consists of327

four staircases [12]. See Figure 13.328

From Lemma 4, a half-open valley uv has three footholds ai, aj and ak, which are reflex vertices of P in329

mutually different orientations, and therefore each of which is contained in a different staircase. Also from330

Lemma 7, a realistic roof of P containing uv can contain only one additional half-open valley u′v′ because331

only one chain of ∂P \{ai, aj , ak} can have three reflex vertices of mutually different orientations. Therefore,332

all realistic roofs over an orthogonally convex rectilinear polygon can have at most two half-open valleys as333

shown in Figure 13.334

We give an upper bound on the number of realistic roofs over P as we did in the proof of Theorem 2.335

Let R′ be a realistic roof over P which has no half-open valleys and let k denote the number of open valleys336

u1v1, u2v2, . . . , ukvk in R′. Let xi denote the number of free vertices of P which can induce a half-open valley337

with uivi. The number of realistic roofs that can be transformed to R′ is at most
∑
i,j xixj ≤

(
k
2

)
m2 ≤ m4.338

Therefore, the number of distinct realistic roofs over P is at most m4
(
m
bm2 c

)
.

u v

u′ v′

Figure 13: An orthogonally convex rectilinear polygon P with two half-open valleys uv and u′v′

339

Theorem 3 Let P be an orthogonally convex rectilinear polygon with n vertices. There are at most m4
(
m
bm2 c

)
340

distinct realistic roofs over P , where m = n−4
2 .341

6 Algorithm342

In this section, we will present an algorithm that generates all possible realistic roofs over a given rectilinear343

polygon P . Ahn et al. [1] suggested an efficient algorithm that generates all realistic roofs which do not344
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contain half-open valleys. Let GenerateOpenValleys denote the algorithm. GenerateOpenValleys345

spends O(n4) time in preprocessing and generates realistic roofs one by one in O(1) time each. Our algorithm346

also spends O(n4) time in preprocessing: P has O(n3) triples and O(n2) pairs of reflex vertices, and checking347

whether each triple and pair is a candidate triple or candidate pair takes O(n) time. And then, we create348

an empty list Luv of reflex vertices for each candidate pair of uv and add a reflex vertex ai to Luv if ai and349

the footholds of uv form a candidate triple.350

Our algorithm works as follows. It runs GenerateOpenValleys and gets a realistic roof R with k351

open valleys u1v1, . . . , ukvk. A pair (ai, a
′
i) of footholds corresponding to uivi, 1 ≤ i ≤ k, has a list Luivi of352

reflex vertices. Our algorithm either chooses a reflex vertex wi from Luivi or not. Let VO denote the set of353

pairs of footholds for which no reflex vertex is chosen, and let VH denote the set of triples (ai, a
′
i, wi) such354

that a reflex vertex wi is chosen for (ai, a
′
i). If no reflex vertex is chosen for any pair (ai, a

′
i) of footholds,355

that is, VH = ∅, then the realistic roof with open valleys of V is exactly R. Otherwise, our algorithm checks356

whether every pair of valleys in VO ∪VH is compatible as follows. Suppose that we have already checked the357

compatibility of pairs of valleys in VO∪VH and let Ni denote the number of valleys in (VO∪VH)\{(ai, a′i, wi)}358

incompatible with (ai, a
′
i, wi).359

When we replace wi with another reflex vertex w′i in Luivi , we compute the compatibility between360

(ai, a
′
i, w
′
i) and each valley in (VO ∪ VH) \ {(ai, a′i, wi)} only and update Ni. This can be done in O(k) time.361

If
∑k
i=1Ni = 0, every pair of valleys in VO ∪ VH is compatible, and therefore there is a roof with valleys of362

VO ∪ VH . Therefore, our algorithm finds all realistic roofs correspond to P in O(m1.3211m) time.363

Theorem 4 Given a rectilinear polygon P with n vertices, m of which are reflex vertices, after O(n4)-time364

preprocessing, all the compatible sets of P can be enumerated in O(m1.3211m
(
m
bm2 c

)
) time.365
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