
CCCG 2021, Halifax, Canada, August 10–12, 2021

Minimum-Link Shortest Paths for Polygons amidst Rectilinear Obstacles∗

Mincheol Kim† Hee-Kap Ahn‡

Abstract

Consider two axis-aligned rectilinear simple polygons in
the domain consisting of axis-aligned rectilinear obsta-
cles in the plane such that the bounding boxes, one for
each obstacle and one for each polygon, are disjoint.
We present an algorithm that computes a minimum-
link rectilinear shortest path (a rectilinear shortest path
with the minimum number of line segments) connecting
the two polygons in O((N + n) log(N + n)) time using
O(N + n) space, where n is the number of vertices in
the domain and N is the total number of vertices of the
two polygons.

1 Introduction

The problem of finding paths connecting two objects
amidst obstacles has been studied extensively in the
past. It varies on the underlying metric (Euclidean, rec-
tilinear, etc.), types of obstacles (simple polygons, rec-
tilinear polygons, rectangles, etc.), and objective func-
tions (minimum length, minimum number of links, or
their combinations). See the survey in Chapter 31
of Handbook of Discrete and Computational Geome-
try [17] on various approaches to this problem and re-
sults.

For two points p and q contained in the plane, possi-
bly with rectilinear polygonal obstacles (i.e., a rectilin-
ear domain), a rectilinear shortest path from p to q is a
rectilinear path from p to q with minimum total length
that avoids the obstacles. In the rest of the paper, we
say a shortest path to refer to a rectilinear shortest path
unless stated otherwise. A rectilinear path consists of
horizontal and vertical segments, each of which is called
link. Among all shortest paths from p to q, we are inter-
ested in a minimum-link shortest path from p to q, that
is, a shortest path with the minimum number of links

∗This research was partly supported by the Institute of In-
formation & communications Technology Planning & Evalua-
tion(IITP) grant funded by the Korea government(MSIT) (No.
2017-0-00905, Software Star Lab (Optimal Data Structure and
Algorithmic Applications in Dynamic Geometric Environment))
and (No. 2019-0-01906, Artificial Intelligence Graduate School
Program(POSTECH)).

†Department of Computer Science and Engineering, Po-
hang University of Science and Technology, Pohang, Korea.
rucatia@postech.ac.kr

‡Graduate School of Artificial Intelligence, Department of
Computer Science and Engineering, Pohang University of Science
and Technology, Pohang, Korea. heekap@postech.ac.kr

(or one with the minimum number of bends). There has
been a fair amount of work on finding minimum-link
shortest paths connecting two points amidst rectilinear
obstacles in the plane [1, 9, 18, 19, 21].

These definitions are naturally extended to two more
general objects contained in the domain. A shortest
path connecting the objects is one with minimum path
length among all shortest paths from a point of one
object to a point of the other object. A minimum-link
shortest path connecting the objects is a minimum-link
path among all shortest paths.

In this paper, we consider the problem of finding
minimum-link shortest paths connecting two objects in
a rectilinear domain, which generalizes the case of con-
necting two points, in some modest environment. The
rectilinear polygonal obstacles are considered as open
sets. Two axis-aligned rectilinear polygons are said to
be box-disjoint if the axis-aligned bounding boxes, one
for each rectilinear polygon, are disjoint in their interi-
ors. A set of axis-aligned rectilinear polygons is box-
disjoint if the polygons of the set are pairwise box-
disjoint. The rectilinear domain induced by a set of
box-disjoint rectilinear polygons in the plane is called
a box-disjoint rectilinear domain. We require the input
objects and the obstacles in the domain to be also pair-
wise box-disjoint, unless stated otherwise.

Problem definition. Given two axis-aligned rectilinear
simple polygons S and T in a rectilinear domain in the
plane such that S,T, and the obstacles in the domain are
pairwise box-disjoint, find a minimum-link rectilinear
shortest path from S to T.

Related Works. Computing shortest paths or
minimum-link paths in a polygonal domain has been
studied extensively. When obstacles are all rectan-
gles, Rezende et al. [6] presented an algorithm with
O(n log n) time and O(n) space to compute a shortest
path connecting two points amidst n rectangles. For a
rectilinear domain with n vertices, Mitchell [11] gave
an algorithm with O(n log n) time and O(n) space
to compute a shortest path connecting two points
using a method based on the continuous Dijkstra
paradigm [10]. Later, Chen and Wang [2] improved the
time complexity to O(n + h log h) for a triangulated
polygonal domain with h holes.

Computing a minimum-link path, not necessarily

33rd Canadian Conference on Computational Geometry, 2021

shortest, in a polygonal domain has also been stud-
ied well. For a minimum-link rectilinear path connect-
ing two points in a rectilinear domain with n vertices,
Imai and Asano [8] gave an algorithm with O(n log n)
time and space. Then a few algorithms improved the
space complexity to O(n) without increasing the run-
ning time [4, 12, 15]. Very recently, Mitchell [13] gave
an algorithm with O(n + h log h) time and O(n) space
for triangulated rectilinear domains with h holes.

Yang et al. [19] considered the problem of finding a
rectilinear path connecting two points amidst rectilin-
ear obstacles under a few optimization criteria, such as
a minimum-link shortest path, a shortest minimum-link
path, and a least-cost path (a combination of link cost
and length cost). By constructing a path-preserving
graph, they gave a unified approach to compute such
paths in O(ne+n log n) time, where n is the total num-
ber of polygon edges and e is the number of polygon
edges connecting two convex vertices. The space com-
plexity is O(ne) due to the path-preserving graph of
size O(ne). Since e is O(n), the running time becomes
O(n2) in the worst case, even for convex rectilinear poly-
gons (obstacles). A few years later, they gave two al-
gorithms on the problem [21], improving their previous
result, one with O(n log2 n) time and O(n log n) space

and the other with O(n log3/2 n) time and O(n log3/2 n)
space using a combination of a graph-based approach
and the continuous Dijkstra approach. It is claimed
in [9] that a minimum-link shortest path can be com-
puted in Θ(n log n) time and O(n) space when obstacles
are rectangles by the algorithm in another paper [20] by
the same authors, but the paper [20] is not available.

Later, Chen et al. [1] gave an algorithm improving
the previous results for finding a minimum-link shortest
path connecting two points in O(n log3/2 n) time and
O(n log n) space using an implicit representation of a
reduced visibility graph, instead of computing the whole
graph explicitly. Very recently, Wang [18] pointed out
a flaw in the algorithm in [1] and claimed that to make
it work, each vertex of the graph must store a constant
number of nonlocal optimum paths together with local
optimum paths. Wang gave an algorithm with O(n +

h log3/2 h) time and O(n+h log h) space using a reduced
path-preserving graph from the corridor structure [13]
and the histogram partitions [16], where h is the number
of holes (obstacles) in the rectilinear domain.

However, we are not aware of any result on computing
the minimum-link shortest path connecting two objects
other than points.

Our Results. We consider the minimum-link shortest
path problem for two axis-aligned rectilinear polygons S
and T in a box-disjoint rectilinear domain. This general-
izes the two-point shortest path problem to two-polygon
shortest path problem. The theorem below summarizes

s2 t3S T

t1

t2

t4

s1

s3

π∗

π′
π

Figure 1: The box-disjoint rectilinear domain with S, T.
Light gray rectilinear polygons are obstacles. There are six
pairs of points, (s1, t1), (s1, t2), (s2, t3), (s2, t4), (s3, t3), and
(s3, t4), that determine the length of a shortest path from S
to T. The path π from s1 to t1 (or t2) is a minimum-link
shortest path from S to T with eight links among all shortest
paths without intersecting the interiors of bounding boxes of
obstacles. However, the blue path π′ from s1 to t2 has seven
links and the red path π∗ from s2 to t3 has five links, which
is optimal.

our results.

Theorem 1 Let S and T be two axis-aligned rectilinear
simple polygons with N vertices in a rectilinear domain
with n vertices in the plane such that S,T, and the ob-
stacles in the domain are pairwise box-disjoint. We can
compute a minimum-link shortest path from S to T in
O((N + n) log(N + n)) time using O(N + n) space.

The main difficulty lies in computing a shortest path
from S to T. The length of a shortest path from S to
T is determined by a pair of points, one lying on the
boundary of S and one lying on the boundary of T.
Such a point is a vertex of S or T, or the point on the
boundary of S or T where a horizontal or vertical ray
emanating from a vertex in the domain hits first. Since
the domain has O(N + n) vertices, there are O(N + n)
such points on the boundaries of S and T, and O((N +
n)2) pairs of points, one from S and the other from T, to
consider in order to determine the length of a shortest
path. Thus, if we use a naive approach that computes
a minimum-link shortest path for each point pair, it
may take Ω((N + n)2) time. Theorem 1 shows that
our algorithm computes a minimum-link shortest path
from S to T efficiently. Also, a minimum-link shortest
path may intersect the bounding box of an obstacle,
although S, T, and obstacles are pairwise box-disjoint.
See Figure 1.

We first consider a simpler problem for an axis-aligned
line segment S and a point t contained in the domain
consisting of axis-aligned rectangular obstacles. We par-
tition the domain into at most eight regions using eight
xy-monotone paths from S. We observe that every

CCCG 2021, Halifax, Canada, August 10–12, 2021

shortest path from S to a point in a region is either
x-, y-, or xy-monotone [6]. Moreover, we define a set
of O(n) baselines for each region, and show that there
is a minimum-link shortest path from S to t consist-
ing of segments contained in the baselines. Based on
these observations, our algorithm applies a plane sweep
technique with a sweep line moving from S to t and
computes the minimum numbers of links from S to the
intersections of the baselines and the sweep line effi-
ciently. After the sweep line reaches t, our algorithm
reports a minimum-link shortest path that can be ob-
tained from a reverse traversal from t using the number
of links stored in baselines. During the sweep, our algo-
rithm maintains a data structure storing baselines (and
their minimum numbers of links) and updates the struc-
ture for the segments (events) on the boundary of the
region.

It takes, however, O(n2) time using O(n) space. To
reduce the time complexity without increasing the space
complexity, our algorithm maintains another data struc-
ture, a balanced binary search tree, each node of which
corresponds to a set of consecutive baselines. This tree
behaves like a segment tree [5]. Instead of updating the
minimum numbers of links of O(n) baselines at each
event of the plane sweep algorithm, we update O(log n)
nodes of the tree that together correspond to the base-
lines. This improves the time for handling each sweep-
line event from O(n) to O(log n), and thus improving
the total time complexity to O(n log n).

Then we extend our algorithm to handle a line seg-
ment T (not a point t) and box-disjoint rectilinear ob-
stacles (not necessarily rectangles). We observe that
every shortest path contained in a region from S to any
point of T is either x-, y-, or xy-monotone, so our algo-
rithm partitions the domain into at most eight regions
again. Then T intersects at most five regions. Our al-
gorithm computes a minimum-link shortest path from
S to T ′ for the portion T ′ of T contained in each re-
gion, and then returns the minimum-link shortest path
among the paths. Also, we consider that the input ob-
jects are rectilinear simple polygons S and T with N ver-
tices. Recall that there are O((N + n)2) pairs of points
that determine the length of a shortest path from S to
T. To handle them efficiently, we add O(N) additional
baselines and O(N) events induced by S and T during
the plane sweep algorithm. Then the number of events
becomes O(N + n) and the time to handle each event
takes O(log(N + n)), so we obtain Theorem 1.

Due to lack of space, some of the proofs and details
are omitted. They are available in Appendix.

2 Preliminaries

Let R be a set of n disjoint axis-aligned rectangles in
R2. Each rectangle R ∈ R is considered as an open set

and plays as an obstacle in computing a minimum-link
shortest path in the plane. We let D := R2−∪R∈RR and
call it the rectangular domain induced by R in the plane.
For two points p and q in D, d(p, q) denotes the L1

distance (or the Manhattan distance) from p to q in D,
that is, the length of a shortest path from p to q avoiding
the obstacles. A path is x-monotone if the intersection
of the path with any line perpendicular to the x-axis
is connected. Likewise, a path is y-monotone if the
intersection of the path with any line perpendicular to
the y-axis is connected. If a path is x-monotone and
y-monotone, the path is xy-monotone.

For two objects S and T in D, d(S,T) =
minp∈S,q∈T d(p, q). A shortest path from S to T is a
path in D from a point p ∈ S to a point q ∈ T of length
d(S,T). A minimum-link shortest path from S to T is a
path that has the minimum number of links among all
shortest paths from S to T in D, and we use λ(S,T) to
denote the number of links of a minimum-link shortest
path from S to T. We call a pair (p, q) of points with
p ∈ S and q ∈ T such that d(S,T) = d(p, q) a closest
pair of points of S and T. We say p is a closest point
of S from T, and q is a closest point of T from S. Note
that there can be more than one closest pair of points
of S and T.

We make an assumption that the rectangles are in
general position, that is, no two rectangles in R have
corners, one corner from each rectangle, with the same
x- or y-coordinate. A horizontal line segment H can be
represented by the two x-coordinates x1(H) and x2(H)
of its endpoints (x1(H) < x2(H)) and the y-coordinate
y(H) of them. Likewise, a vertical line segment V can be
represented by the two y-coordinates y1(V) and y2(V)
of its endpoints (y1(V) < y2(V)) and the x-coordinate
x(V) of them.

2.1 Eight disjoint regions of a rectangular domain

Given a rectangular domain D and a vertical segment
S, we partition D into at most eight disjoint regions
by using eight xy-monotone paths from the endpoints
of S in a way similar to the one by Choi and Yap [3].
Consider a horizontal ray from a point p = p1 on S go-
ing rightwards. The ray stops when it hits a rectangle
R ∈ R at a point p′1. Let p2 be the top-left corner of R.
We repeat this process by taking a horizontal ray from
p2 going rightwards until it hits a rectangle, and so on.
The last horizontal ray goes to infinity. Then we ob-
tain an xy-monotone path πru(p) = (p = p1p

′
1p2p

′
2 . . .).

In other words, πru(p) is an xy-monotone path from p
that alternates going rightwards (until hitting a rect-
angle) and going upwards (to the top-left corner of the
rectangle).

By choosing two directions, one going either right-
wards or leftwards horizontally, and one going ei-
ther upwards or downwards vertically, and order-

33rd Canadian Conference on Computational Geometry, 2021

S

s

s′

D1
x

D1
xy

D1
y

D2
xy

D2
x

D3
xy

D2
y

D4
xy

πru(s)

πur(s)
πul(s)

πlu(s)

πld(s
′) πdl(s

′)
πdr(s

′)

πrd(s
′)

Figure 2: Eight disjoint regions of D by eight xy-monotone
paths from s or s′. Gray rectangles are obstacles.

ing the chosen directions, we define eight rectilin-
ear xy-monotone paths with directions: rightwards-
upwards (ru), upwards-rightwards (ur), upwards-
leftwards (ul), leftwards-upwards (lu), leftwards-
downwards (ld), downwards-leftwards (dl), downwards-
rightwards (dr), and rightwards-downwards (rd). We
use πα(p) to denote them, where α is one in
{ru, ur, ul, lu, ld, dl, dr, rd}. Also, we use πα(p, q) to de-
note the subpath of πα(p) from p to q ∈ πα(p).

Figure 2 illustrates these eight xy-monotone paths,
four upward paths from the upper endpoint s of S and
four downward paths from the lower endpoint s′ of S.
Observe that for a point p ∈ D, the eight paths πα(p)
do not cross each other. Thus, by the eight paths, D
is partitioned into eight regions. See Figure 2. We de-
note by D1

xy (and D2
xy, D3

xy, D4
xy) the region bounded

by πru(s) and πur(s) (and by πul(s) and πlu(s), by πld(s
′)

and πdl(s
′), by πdr(s

′) and πrd(s
′)). We denote by D1

x

(and D2
x) the region bounded by πru(s) and πrd(s

′) (and
by πlu(s) and πld(s

′)), and denote by D1
y (and D2

y) the
region bounded by πur(s) and πul(s) (and by πdl(s

′) and
πdr(s

′)).

Lemma 2 For a point t ∈ ∪1≤i≤4Dixy, every short-
est path from S to t is xy-monotone. For a point
t ∈ ∪1≤i≤2Dix, every shortest path from S to t is x-
monotone. For a point t ∈ ∪1≤i≤2Diy, every shortest
path from S to t is y-monotone.

From now on we simply use Dxy, Dx and Dy to denote
D1
xy, D1

x and D1
y, respectively, and assume that t lies in

a region D′ of the regions. The case that t lies in other
regions can be handled analogously. For each horizontal
side of the rectangles incident to D′, we call the horizon-
tal line containing the side a horizontal baseline of D′.
Similarly, for each vertical side of the rectangles inci-
dent to D′, we call the vertical line containing the side a
vertical baseline of D′. The two vertical lines through S
and t, and the three horizontal lines through s, s′ and t

s

t

c

c′
Dxy(s, t)

s

t

(a) (b)

πru(s)
πur(s)

πld(t) πdl(t)

R1

R2

H1

Hm

Dxy(s, t)

V1

V3

V4

Vz

H2

Figure 3: (a) Dxy(s, t) is the region of Dxy enclosed by the
closed curve composed of πur(s, c), πld(t, c), πru(s, c

′), and
πdl(t, c

′). R1 and R2 are the holes of Dxy(s, t). (b) Horizontal
baselines H1, H2, . . . , Hm of Dxy(s, t) and vertical segments
(red) V1, V2, . . . , Vz on the boundary of Dxy(s, t).

are also regarded as vertical and horizontal baselines of
D′, respectively. We say a minimum-link shortest path
π is aligned to the baselines if every segment of π is
contained in a baseline of the corresponding region. By
using Lemma 3, we find a minimum-link shortest path
aligned to the baselines of each region.

Lemma 3 There is a minimum-link shortest path from
S to t that is aligned to the baselines of D′.

3 t lies in Dxy

We consider the case that t lies in Dxy. By Lemma 2,
every shortest path from S to t is xy-monotone and con-
nects the upper endpoint s of S and t. Let c be the point
with the maximum x-coordinate and the maximum y-
coordinate among the points in πur(s)∩ πld(t). Observe
that c is defined uniquely as πur(s)∩ πld(t) is connected
and xy-monotone by the definition. Likewise, let c′ be
the point with the maximum x-coordinate and the max-
imum y-coordinate among the points in πru(s) ∩ πdl(t).
Then we use Dxy(s, t) to denote the region of Dxy en-
closed by the closed curve composed of πur(s, c), πld(t, c),
πru(s, c

′), and πdl(t, c
′). We denote by ∂xy(s, t) the rec-

tilinear chain of the outer boundary of Dxy(s, t) from s
to t in clockwise, and denote by ∂xy(t, s) the rectilin-
ear chain of the outer boundary of Dxy(s, t) from t to
s in clockwise. See Figure 3(a) for an illustration. By
Lemma 2, every shortest path from s to t is contained
in Dxy(s, t), and therefore every minimum-link shortest
path from s to t is also contained in Dxy(s, t).

We focus on the baselines of Dxy that are de-
fined by s, t, and the rectangles incident to Dxy(s, t),
which we call the baselines of Dxy(s, t). Figure 3(b)
shows the horizontal baselines of Dxy(s, t). Note that
a baseline may cross rectangles incident to Dxy(s, t).
Let H1, H2, . . . ,Hm be the m horizontal baselines of
Dxy(s, t) such that y(H1) < y(H2) < . . . < y(Hm).
Note that s is on H1 and t is on Hm.

CCCG 2021, Halifax, Canada, August 10–12, 2021

3.1 Computing the minimum number of links

Consider a minimum-link shortest path aligned to the
baselines of Dxy(s, t). For the rightmost vertical seg-
ment V of Dxy(s, t), we have y2(V) = y(t) and y1(V) =
y(Hm′) for some horizontal baseline Hm′ with m′ < m.
We can compute a minimum-link shortest path once we
have a minimum-link shortest path from s to the in-
tersection point ci of V and Hi for each i = m′,m′ +
1, . . . ,m, since t is the endpoint of V .

We compute λ(s, t) by applying the plane sweep al-
gorithm, and then report a minimum-link shortest path
aligned to the baselines of Dxy(s, t) that can be obtained
from a reverse traversal from t using λ(s, t).

Imagine a vertical line L sweeping Dxy(s, t) right-
wards. Our plane sweep algorithm maintains a data
structure storing horizontal baselines and their mini-
mum numbers of links among shortest paths from s
to intersections of baselines and L such that the line
segments incident to the intersections of those shortest
paths are horizontal. The algorithm updates their sta-
tus and minimum numbers of links when L encounters
the vertical segments (vertical baselines) on the bound-
ary of Dxy(s, t).

We define the status for each horizontal baseline as
follows. For the intersection point ci = Hi ∩ L for each
i = 1, . . . ,m, if ci ∈ Dxy(s, t), then Hi is active. Other-
wise, Hi is inactive. Observe that a baseline may switch
its status between active and inactive, depending on the
position of L, and these switches occur only when L en-
counters a vertical segment on the boundary of Dxy(s, t).
During the sweep, we maintain the active baselines of
Dxy(s, t) in a set of ranges with respect to their indices
in a range tree Tran. A range [a, b] contained in Tran rep-
resents a set of active baselines Ha, Ha+1, . . . ,Hb, con-
secutive in their indices from a to b. Every range [a, b]
in Tran is maximal in the sense that Ha−1 and Hb+1 are
inactive or not defined in Dxy(s, t). We use M(i) to
denote the minimum number of links among all short-
est paths from s to ci whose segment incident to ci is
horizontal.

We maintain M(i)’s for horizontal baselines during
the plane sweep as follows. There are vertical line seg-
ments V1, V2, . . . , Vz on the boundary of Dxy(s, t), satis-
fying x(V1) < x(V2) < . . . < x(Vz). Note that the lower
endpoint of V1 is s and the upper endpoint of Vz is t.
We consider each vertical segment Vj (1 ≤ j ≤ z) of
Dxy(s, t) as an event, denoted by Ej , because we com-
pute a minimum-link shortest path aligned to the base-
lines of Dxy(s, t), so M(i) changes only when L encoun-
ters a vertical segment. For each Ej , we use α(j) and
β(j) (with α(j) < β(j)) to denote the indices such that
y1(Vj) = y(Hα(j)) and y2(Vj) = y(Hβ(j)), respectively.
Ej belongs to one of the following six types depending
on the boundary part of Dxy(s, t) that Vj lies on. See
Figure 4 for an illustration of each type.

(a) (b) (c)

(d) (e) (f)

s s

t

t

Figure 4: Six types of events of the plane sweep algorithm.
(a) originate event. (b) terminate event. (c) attach event. (d)
detach event. (e) split event. (f) merge event.

• E1 belongs to type originate and Ez belongs to type
terminate.

• Ej for each j = 2, . . . , z − 1 belongs to type attach
if Vj lies on ∂xy(s, t), and to type detach if Vj lies
on ∂xy(t, s).

• Ej belongs to type split if Vj is the left side of a hole
of Dxy(s, t), and to type merge if Vj is the right side
of a hole.

The events are sorted by their x-coordinates. During
the sweep, L encounters Ej when x(L) = x(Vj). Ini-
tially, the tree Tran contains no range, and M(i) is set
to ∞ for all horizontal baselines Hi. When L encoun-
ters E1, which is the originate event with α(1) = 1,
we update M(α(1)) := 1 and M(k) := 2 for each
k ∈ [α(1) + 1, β(1)], and insert the range [α(1), β(1)]
into Tran.

If Ej is an attach event, the inactive baselines Hi

for i from α(j) + 1 to β(j) become active. Observe
that there always exists a range [a′, α(j)] in Tran with
a′ < α(j). Thus, we remove [a′, α(j)] from Tran and
insert [a′, β(j)] into Tran. Then we update M(i) :=
mink∈[a′,α(j)]{M(k) + 2} for each i ∈ [α(j) + 1, β(j)].

If Ej is a detach event, the active baselines Hi for
i from α(j) to β(j) − 1 become inactive. Observe
that there always exists a range [α(j), b′] in Tran with
β(j) < b′. Thus, we remove [α(j), b′] from Tran, and
insert [β(j), b′] into Tran. Then we update M(i) :=
min{M(i),mink∈[α(j),β(j)−1](M(k) + 2)} for each i ∈
[β(j), b′].

If Ej is a split event, the active baselines lying in
between Hα(j) and Hβ(j) become inactive. If there
is such a baseline, there always exists a range [a′, b′]
in Tran with a′ < α(j) and β(j) < b′. In this
case, we remove [a′, b′] from Tran, insert [a′, α(j)] and
[β(j), b′] into Tran, and update for each i ∈ [β(j), b′]

33rd Canadian Conference on Computational Geometry, 2021

M(i) := 4

M(8) = 3

M(9) = 6 M(9) := 4

H

Ej′

Ej

M(4) = 3

M(3) = 2

Vj

Figure 5: A merge event Ej . M(3) = mink∈[a′,α(j)]M(k),
which was updated from Ej′ . The baselines Hi for i =
5, . . . , 7 become active, and M(i) is updated to 4 by M(3)
(Equation 1). M(9) is also updated by M(3) (Equation 1).
H is the canonical segment for Ej .

M(i) := min{M(i),mink∈[a′,β(j)−1]{M(k)+2}} for each
i ∈ [β(j), b′].

If Ej is a merge event, the inactive baselines lying in
between Hα(j) and Hβ(j) become active. If there is such
a baseline, there always exist two ranges [a′, α(j)] and
[β(j), b′] in Tran with a′ < α(j) and β(j) < b′. In this
case, we remove [a′, α(j)] and [β(j), b′] from Tran, insert
[a′, b′] into Tran, and update

M(i) :=

mink∈[a′,α(j)]M(k) + 2

for i ∈ [α(j) + 1, β(j)− 1],

min{M(i),mink∈[a′,α(j)]M(k) + 2}
for i ∈ [β(j), b′].

(1)

Our algorithm eventually finds λ(s, t) when L
encounters the terminate event Ez with β(z) =
m. Then Tran has exactly one range [α(z), β(z)],
and we remove it from Tran. We take λ(s, t) =
min{M(m),mink∈[α(z),β(z)−1]M(k) + 1}.

3.2 Computing a minimum-link shortest path

We compute a minimum-link shortest path from s to
t aligned to the baselines of Dxy(s, t) using λ(s, t). To
do this, we add a horizontal line segment at each event,
which we call a canonical segment. Then we report a
minimum-link shortest path using these canonical seg-
ments.

For instance, consider a merge event Ej . Recall that
Tran has two disjoint ranges [a′, α(j)] and [β(j), b′] with
a′ < α(j) and β(j) < b′. We update M(i) using
Equation 1. Let k∗ ∈ [a′, α(j)] be the smallest in-
dex such that M(k∗) equals mink∈[a′,α(j)]M(k). As-
sume that M(k∗) was updated lately to the current

value at an event Ej′ before L encounters Ej . Obvi-
ously, x(Vj′) < x(Vj). We add a horizontal line seg-
ment H, which we call a canonical segment for Ej with
x1(H) = x(Vj′), x2(H) = x(Vj) and y(H) = y(Hk∗).
See Figure 5.

We add one canonical segment for the merge event
Ej . Likewise, we add one canonical segment per event
of other types, except for the originate event. Since the
x-coordinates of the events are distinct by the general
position assumption, the right endpoints of the canon-
ical segments we add are also distinct. Once the plane
sweep algorithm is done, by following lemma, we can
report a shortest path that has λ(s, t) links.

Lemma 4 There is a minimum-link shortest path from
s to t whose horizontal line segments are all canonical
segments.

Dxy(s, t) can be obtained by ray shooting queries,
each taking O(log n) time, using the data structure
of Giora and Kaplan [7] with O(n log n) preprocessing
time. Let h be the number of holes in Dxy(s, t), and
o be the complexity of the outer boundary of Dxy(s, t).
We can construct Dxy(s, t) in O((o+h) log n) time using
O(o+ h) space.

Let z denote the number of events occurring during
the sweep. At each of the z events, we remove and
insert some ranges. Because the ranges in Tran are dis-
joint by the definition of Tran, we can insert and re-
move a range in O(logm) time by using a simple bal-
anced binary search tree for Tran. We also set or up-
date some M(i)’s at each event. For each event, if we
know mink∈[a1,b1]M(k) for a range [a1, b1], we can up-
date M(i) for i ∈ [a2, b2] (with b1 < a2) in time linear
to the number of consecutive baselines from Ha2 to Hb2 ,
and the number of M(i)’s is O(m). Therefore, it takes
O(m) time to handle an event. We use O(m) space to
maintain Tran and M(i)’s. In total, we use O(o+h+m)
space to compute λ(s, t). We can report a minimum-link
shortest path using O(z) canonical segments. Thus, our
algorithm takes O((n+ o+h) log n+mz) = O(n2) time
and O(o+ h+m+ z) = O(n) space.

Reducing the time complexity. To reduce the time
complexity of our algorithm to O(logm) for handling
each event while keeping the space complexity to O(n)
space, we build another balanced binary search tree Tseg,
a variant of a segment tree in [5]. The idea is to use Tseg
together with Tran to maintain O(logm) nodes corre-
sponding O(m) M(i)’s efficiently, instead of updating
M(i)’s for each event immediately. For each event, we
have the range of indices of baselines inserted into (or
removed from) Tran. Using the range, we find O(logm)
nodes in O(logm) time and update information for each
node in constant time. The details can be found in Ap-
pendix.

CCCG 2021, Halifax, Canada, August 10–12, 2021

δ1

δ2

δ3

S

δ4 t = δ0

Dx

t

S

(a) (b)

t
S

(c)

Figure 6: (a) A minimum-link shortest path from S to t.
It is not contained in Dx. (b) Every shortest path from S
to t passes through δi for i = 0, . . . , 4 and is contained in⋃
i=0,...,3 Dxy(δi, δi+1). (c) Shortest paths from S to t such

that the closest pair of S and t is not unique.

Lemma 5 For a point t in Dxy, we can compute a
minimum-link shortest path from S to t in O(n log n)
time using O(n) space.

4 t lies in Dx or Dy

In this section, we assume that t lies in Dx. Then every
shortest path from S to t is x-monotone by Lemma 2. In
case that t lies in Dy, every shortest path is y-monotone
and we can handle the case in a similar way. Unlike the
case of t ∈ Dxy, there can be a shortest path from S to
t not contained in Dx. See Figure 6(a). However, we
can compute a minimum-link shortest path from S to t
using the algorithm in Section 3 as a subprocedure.

Let π denote a minimum-link shortest path from S to
t aligned to the baselines, and let s∗ and t be the two
endpoints of π with s∗ ∈ S. By definition, (s∗, t) is a
closest pair of S and t. Since π is x-monotone, it is a con-
catenation of xy-monotone paths such that every two
consecutive xy-monotone subpaths of π change their
directions between monotone increasing and monotone
decreasing on a horizontal segment, which we call a
winder, of π.

Lemma 6 Every winder of a shortest path from S to t
contains one entire horizontal side of a rectangle in R
incident to Dx.

Consider the horizontal sides of rectangles contained
in the winders of a minimum-link shortest path π. Let
g be the number of winders of π, and let δi be the mid-
point of the horizontal side contained in the ith winder

in order along π from t to s∗. We call such a mid-
point a divider of π. For convenience, we let t = δ0
and s∗ = δg+1. Then the subpath from δi to δi+1 for
0 ≤ i ≤ g of π is xy-monotone by the definition of the
winders of π.

By Lemma 6, every winder of a minimum-link short-
est path from S to t contains a horizontal side of a
rectangle incident to Dx. Therefore, in the following we
compute the dividers of a minimum-link shortest path
among the midpoints of the top and bottom sides of each
rectangle incident to Dx, and compute the xy-monotone
paths connecting the dividers, in order, which together
form a minimum-link shortest path.

We compute d(S, t) by a plane sweep algorithm and
find the dividers δ1, . . . , δg of a minimum-link shortest
path π as follows. For a rectangle R ∈ R incident to Dx,
let δ(R) and δ′(R) denote the midpoints of the top and
bottom sides of R, respectively. Then δ(R) and δ′(R)
are candidates of the dividers of π. We consider each
midpoint as an event during the sweep.

While sweeping Dx with a vertical line L moving
rightwards, L encounters δ(R) and δ′(R) of a rectan-
gle R at the same time. Consider two horizontal rays,
one from δ(R) and one from δ′(R), going leftwards.
We show how to handle the ray γ from δ(R). The
ray from δ′(R) can be handled similarly. Let pγ be
the point of the vertical segment on the boundary of
Dx which γ hits first. If pγ ∈ S, the shortest path
from S to δ(R) is simply pγδ(R). If pγ lies in πru(s)
(or πrd(s

′)), every shortest path from S to δ(R) is xy-
monotone. For these two cases, we store at δ(R) the
distance d(S, δ(R)) and the closest point (one of pγ ,
s, or s′) of S from δ(R). Consider the case that pγ
is in the right side of a rectangle R′ ∈ R incident to
Dx. We already have d(S, δ(R′)) stored at δ(R′) and
d(S, δ′(R′)) stored at δ′(R′) during the plane sweep.
Observe that every shortest path from δ(R) to δ(R′)
or to δ′(R′) is xy-monotone, and the closest point so

of S from δ(R) is the closest point of S from δ(R′)
or from δ′(R′). Since d(so, δ(R)) = min{d(S, δ(R′)) +
d(δ(R′), δ(R)), d(S, δ′(R′)) + d(δ′(R′), δ(R))} by defini-
tion, we can compute so and d(so, δ(R)) in constant
time.

When L encounters t, we again consider a horizontal
ray γ from t going leftwards and the point pγ of the ver-
tical segment on the boundary of Dx which γ hits first.
If pγ ∈ S, the minimum-link shortest path is simply pγt
and we are done. For pγ lying on a side of a rectan-
gle R ∈ R incident to Dx, if d(t, δ(R)) + d(S, δ(R)) <
d(t, δ′(R)) + d(S, δ′(R)) (or the other way around with-
out equality), we conclude there is no shortest path from
S to t passing through δ′(R) (or through δ(R)). Assume
that π passes through δ(R). By the general position
assumption, y(δ(R)) > y(t). Let R′ be the rectangle
incident to Dx that the horizontal ray from δ(R) go-

33rd Canadian Conference on Computational Geometry, 2021

ing leftwards hits first. If d(S, δ(R′)) + d(δ(R′), δ(R)) >
d(S, δ′(R′)) + d(δ′(R′), δ(R)) or there is no such rect-
angle R′, δ(R) is a divider of π. Moreover, δ(R) is
the first divider δ1 of π from t, and thus every short-
est path from δ1 = δ(R) to t is xy-monotone. There-
fore, we construct Dxy(δ(R), t) and apply the algo-
rithm in Section 3. Then we apply this procedure from
δ(R), recursively, and compute every xy-monotone sub-
path of π using canonical segments by Lemma 4, and
glue them into one to form π. See Figure 6(b). Fi-
nally we obtain g + 1 xy-monotone paths with dividers
δ0 = t, δ1, . . . , δg+1 = s∗ ∈ S.

During the plane sweep, we find in O(log n) time the
first rectangle hit by the horizontal ray γ emanating
from a midpoint of a rectangle going leftwards using
the data structure supporting ray shooting queries by
Giora and Kaplan [7]. Thus, it takes O(n log n) time
for ray shootings from midpoints in total. It takes
O(Ki) time to find a divider δi, where Ki is the num-
ber of the recursion depth of the algorithm to compute
δi from δi−1. As shown in Section 3, computing an
xy-monotone minimum-link shortest path from δi to
δi−1 takes O(Di logDi) time with O(Di) space after
O(n log n)-time preprocessing, where Di is the number
of the baselines defined by the rectangles incident to
Dxy(δi, δi−1). Observe that Σ1≤i≤g+1Ki = O(n), and
Σ1≤i≤g+1Di = O(n) because the regions Dxy(δi, δi−1)’s
are disjoint in their interiors. Thus, the total time com-
plexity is O(n log n) and the total space complexity is
O(n).

Handling degenerate cases. There can be two short-
est paths from S to t, one passing through δ(R) and one
passing through δ′(R) for a rectangle R. In this case, we
have d(t, δ(R)) + d(S, δ(R)) = d(t, δ′(R)) + d(S, δ′(R)),
which can be found in handling the midpoints of R dur-
ing the plane sweep. Observe that this equality may
occur multiple times in finding dividers of a minimum-
link shortest path. Thus we need to devise an efficient
way of maintaining all sequences of dividers, each of
which may define a shortest path. See Figure 6(c). we
show how to maintain these sequences of dividers and
to find a minimum-link shortest path without increas-
ing the time and space complexities in Lemma 7. The
details can be found in Appendix.

Lemma 7 For a point t in Dx ∪ Dy, we can compute
a minimum-link shortest path from S to t in O(n log n)
time using O(n) space.

5 Extending to a line segment T

Consider the case that the target is not just a point but
an axis-aligned line segment T . We explain how the
algorithm presented in previous sections works for T .
Assume that T is a vertical line segment and x(S) <

x(T). We partition the domain D into eight regions
using the eight monotone paths πα’s from S defined
in Section 2.1. Then T intersects at most five regions
D1
x, D1

xy, D4
xy, D1

y, and D2
y. For the portion T ′ of T

contained in each region, we compute a minimum-link
shortest path from S to T ′.

For the portion of T contained in a region of
D1
xy,D

4
xy,D

1
y and D2

y, the closest point of S from T ′ is
an endpoint of S and the closest point in T ′ from S
is an endpoint of T ′ by Lemma 2. Thus we just apply
the algorithms in Sections 3 and 4 for the corresponding
endpoints of S and T ′.

Consider the case that T ′ ⊂ D1
x. A minimum-link

shortest path from S to T ′ connects S and an endpoint
of T ′ or the intersection point t′ of T ′ with a horizontal
baseline of Dx. We can compute the distance from S
to two endpoints of T ′ using the algorithm in Section 4.
There are O(n) intersection points on T ′ with horizon-
tal baselines of Dx. During the plane sweep, we have
d(S, δ(R)) and d(S, δ′(R)) for each hole R of Dx such
that the horizontal baselines defined by R intersects T ′.
Thus, we can compute the distance from S to each in-
tersection point t′ on T ′ after the plane sweep. Then
we obtain all the closest pairs of S and T ′.

If there is only one closest pair, or the closest point
of T ′ from S is the same for all closest pairs, we can
compute a minimum-link shortest path from S to T ′

as we do in Section 4. Otherwise, we can compute a
minimum-link shortest path from S to T ′ using technical
lemmas in Appendix.

We can compute the portions T ′ of T contained in
each of the five regions in O(log n) time using binary
search along each path πα and computing an intersec-
tion of T and πα. For T ′ ⊂ D1

x, we can find the closest
pairs in O(n log n) time if we use the ray shooting struc-
ture of Giora and Kaplan [7]. For each T ′ we use our
algorithm in Sections 3 and 4 with O(n log n) time and
O(n) space, and eventually find a minimum-link short-
est path from S to T by choosing minλ(S, T ′) for all
T ′.

Lemma 8 Given two axis-aligned line segments S and
T in a rectangular domain with n disjoint rectangular
obstacles in the plane, we can compute a minimum-link
shortest path from S to T in O(n log n) time using O(n)
space.

6 Extending to box-disjoint rectilinear polygons

We show how to extend our algorithm in previous sec-
tions so that it handles box-disjoint rectilinear polygons.
Let RP be a set of box-disjoint rectilinear polygons, and
let B(P) denote the bounding box of a polygon P ∈ RP .
We use C := R2−∪P∈RP

P to denote a box-disjoint rec-
tilinear domain induced by RP in the plane. A set Q
is rectilinear convex if and only if any line parallel to

CCCG 2021, Halifax, Canada, August 10–12, 2021

the x- or y-axis intersects Q in at most one connected
component. The rectilinear convex hull of P , denoted
by CH(P), is the common intersection of all rectilinear
convex sets containing P .

We assume that both S and T are disjoint from the
rectangles B(P) for P ∈ RP . Then no shortest path
intersects the interior of CH(P) for P ∈ RP . If there is
a shortest path π intersecting the interior of CH(P) for
a rectilinear polygon P ∈ RP , π can be shortened by
replacing each connected portion of π contained in the
interior with the boundary curve of CH(P) between the
endpoints of the portion, a contradiction. Thus, we re-
place each polygon P with CH(P) and find a minimum-
link shortest path from S to T avoiding CH(P)’s. We
assume that each polygon P ∈ RP is rectilinear convex
in this subsection. If there is a shortest path π from S to
T intersecting B(P) for P ∈ RP , the subpath π ∩B(P)
can be replaced with a subpath along the boundary of
B(P) without increasing the length. This implies that
there is a shortest path from S to T avoiding B(P) for
all P ∈ RP . From Lemma 2, every shortest path from
S to T avoiding B(P) for all P ∈ RP is either x-, y-, or
xy-monotone. The two subpaths have same length and
endpoints, so they have the same monotonicity: One is
X-monotone if and only if the other is X-monotone, for
X ∈ {x, y, xy}. Therefore, every shortest path from S
to T contained in C is either x-, y-, or xy-monotone.

Here we partition the domain into eight disjoint re-
gions using eight xy-monotone paths as follows. We
define the eight xy-monotone paths from S in a way
slightly different to the one in Section 2.1. Consider the
horizontal ray emanating from s = p1 going rightwards.
Let P ∈ RP be the polygon such that B(P) is the first
rectangle hit by the ray among the rectangles, at point
b on its left side. If the upper endpoint q of the leftmost
vertical side of P lies above b, we set p′1 to b and continue
with the vertical ray from p′1 to q, and continue along
the boundary chain of P from q to the left endpoint p2
of the topmost side of P in clockwise direction. Other-
wise, the horizontal ray continues going rightwards until
it hits P at a point b′. Then we set p′1 to b′ and continue
along the boundary chain of P from p′1 to the left end-
point p2 of the topmost side of P in clockwise direction.
We repeat this process by taking the horizontal ray from
p2 going rightwards. Then we obtain an xy-monotone
path πru(p) = (p = p1, p

′
1, p2, p

′
2, . . .), by following the

boundary chain of P from p′i to pi+1 in clockwise di-
rection. Thus, πru(p) is an xy-monotone path from p
that alternates going horizontally rightwards and going
vertically upwards. We define eight xy-monotone paths
πα(p) as in Section 2.1. Using these eight xy-monotone
paths, we construct at most eight disjoint regions.

Using those regions, we compute a minimum-link
shortest path from S to the portion of T contained in
each region. Let T ′ be the portion of T contained in

Dxy. The closest pair (s, t) of S and T ′ consists of their
endpoints. We compute Dxy(s, t) using the method in
Section 3. Observe that every shortest path from S to
T ′ is contained in Dxy(s, t). With O(n) baselines defined
by the sides of B(P) and the boundary segments of P
incident to Dxy for all P ∈ RP , we can show that there
is a minimum-link shortest path from S to T ′ which
is aligned to the baselines using an argument similar
to the proof of Lemma 3. Hence, we can compute a
minimum-link shortest path from S to T ′ in the same
time and space as in Lemma 5. Similarly, we can com-
pute a minimum-link shortest path from S to T ′ for the
portions T ′ of T contained in other regions. When T ′

is contained in Dx, a minimum-link shortest path may
have some winders, each of which contains the topmost
or the bottommost side of P for a rectilinear polygon
P ∈ RP . This can be shown by an argument similar to
the proof of Lemma 6. Thus we can compute d(S, T ′)
using the same plane sweep algorithm on Dx, and find
the dividers which are midpoints of the topmost or the
bottommost side of P as we do in Section 4 in the same
time and space stated in Lemma 7.

S or T intersects bounding boxes. When S or T in-
tersects some bounding boxes of obstacles, we consider
each portion of S or T contained in a bounding box inde-
pendently. The portion not contained in any bounding
box can be handled as we do for segments disjoint from
the boxes. For the portion contained in a bounding box
B(P) for a rectilinear polygon P , every minimum-link
shortest path from S to T is the concatenation of a
subpath contained in B(P) and the subpath not con-
tained in B(P) such that both subpaths are minimum-
link shortest paths sharing one point on the bound-
ary of B(P). Using that property, we can compute a
minimum-link shortest path from S to T . The overall
running time remains to be O(n log n) time using O(n)
space. See Appendix for details.

Lemma 9 For two axis-aligned line segments S and T
in C such that both S and T are disjoint from B(P) for
all P ∈ RP , we can compute a minimum-link shortest
path from S to T in C in O(n log n) time using O(n)
space.

7 Extending to two polygons S and T

Now we consider two rectilinear polygons S and T with
N vertices in C. We can compute a minimum-link short-
est path from S to T using our algorithms in previ-
ous sections. Since S, T, and obstacles are pairwise
box-disjoint, the distance d(S,T) between S and T can
be represented as d(S,T) = mins∈B(S),t∈B(T){d(s, t) +
mins′∈S d(s, s′) + mint′∈T d(t, t′)}. If we construct the
L1 Voronoi diagram of N boundary segments of S (or
T) [14] in O(N logN) time using O(N) space, we can

33rd Canadian Conference on Computational Geometry, 2021

πru(a)

πrd(c)

πur(a)πul(b)

S

T

ab

c

T

S

(a) (b)

s

t

Figure 7: (a) Eight regions of C by eight xy-monotone paths
from four corners of B(S) with box-disjoint obstacles. T
intersects at most five regions. (b) There are nine closest
pairs of S and T. Among all paths connecting closest pairs,
the minimum-link shortest path from s to t is the optimal.

maintain and report mins′∈S d(s, s′) and mint′∈T d(t, t′)
for any s ∈ B(S) and t ∈ B(T) in O(logN) query time.
From this observation, together with Lemma 2, we have
the following lemma.

Lemma 10 If there is an x-monotone shortest path
from S to T, then every shortest path from S to T is
x- or xy-monotone. If there is a y-monotone shortest
path from S to T, then every shortest path from S to T
is y- or xy-monotone.

From Lemma 10, we can partition the box-disjoint
rectilinear domain into eight disjoint regions using eight
xy-monotone paths from B(S) as done in Section 6.
See Figure 7(a). There are O(N) vertical and hori-
zontal baselines defined by the boundary segments of
S and T, and Lemma 3 also holds. Thus, we compute a
minimum-link shortest path aligned to the baselines of
each region in which the portion of T is contained.

Let T′ be the portion of T contained in Dxy. Since
S and T′ are rectilinear polygons, there can be more
than one closest pair of points for S and T′. More-
over, the points appearing in the closest pairs are on
line segments with slopes ±1. See Figure 7(b). If we
compute Dxy(s, t) for every closest pair (s, t) of S and
T′, the time and space complexities may increase. In-
stead, we modify the plane sweep algorithm in Sec-
tion 3 slightly. There can be more than one originate
and terminate events during the plane sweep because
there can be more than one closest pair of S and T′.
Also, there are no attach and detach events since we do
not compute Dxy(s, t). For each event Ej in Section 3,
however, we use α(j), β(j) and Tran to maintain active
baselines. Since we have all points in closest pairs of S
and T, we set two horizontal baselines with the small-
est and largest y-coordinate from those points, respec-
tively. The horizontal baselines between the two base-
lines are used for inserting the range, which represents
active baselines, into Tran of each event. Since there are
O(N +n) baselines between the two baselines, the time

to handle an event takes O(log(N+n)) time. Also, there
are additional O(N) originate and terminate events with
O(n) the other events, so we can compute a minimum-
link shortest path from S to T′ in O((N+n) log(N+n))
time using O(N + n) space.

Let T′ be the portion of T contained in Dx. Every
shortest path from S to T′ is x-monotone, so we can
compute the closest pairs of S and T′ as the sweep line
encounters each vertical line segments of T′ using the
plane sweep algorithm in Section 4. Then we can com-
pute dividers in the same way without modifying the
algorithm in Section 4. Lemmas related to dividers in
Section 4 still hold, so we can compute a minimum-link
shortest path connecting dividers similarly. As above,
we can compute a minimum-link shortest path from S
to a divider (or from a divider to T′). This implies we
obtain a minimum-link shortest path from S to T′. We
omit the details.

Therefore, we have Theorem 1.

8 Conclusion

We present an algorithm to compute a minimum-link
shortest path connecting two rectilinear polygons in the
box-disjoint rectilinear domain efficiently. Our algo-
rithm computes a minimum-link shortest path from a
point to the line segment using plane sweep, based on
the monotonicity of the optimal path. Then we can ex-
tend objects to rectilinear polygons and apply a slightly
modified algorithm.

Still there are quite a few problems to study. One
typical problem is to compute a minimum-link short-
est path connecting two objects in a general rectilinear
domain such that the obstacles in the domain are not
necessarily box-disjoint. There is a previous work in a
general rectilinear domain, but there seem some gaps to
the optimal time and space complexities.

CCCG 2021, Halifax, Canada, August 10–12, 2021

References

[1] D.Z. Chen, O. Daescu, and K.S. Klenk. On geo-
metric path query problems. International Jour-
nal of Computational Geometry & Applications,
11(6):617–645, 2001.

[2] D.Z. Chen and H. Wang. L1 shortest path queries
among polygonal obstacles in the plane. In 30th
International Symposium on Theoretical Aspects
of Computer Science. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2013.

[3] J. Choi and C. Yap. Monotonicity of rectilin-
ear geodesics in d-space. In Proceedings of the
Annual Symposium on Computational Geometry,
pages 339–348, 1996.

[4] G. Das and G. Narasimhan. Geometric searching
and link distance. In Workshop on Algorithms and
Data Structures, pages 261–272. Springer, 1991.

[5] M. De Berg, O. Cheong, M. Van Kreveld, and
M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag TELOS,
Santa Clara, CA, USA, 3rd edition, 2008.

[6] P.J. De Rezende, D.-T. Lee, and Y.-F. Wu. Rec-
tilinear shortest paths in the presence of rectangu-
lar barriers. Discrete & Computational Geometry,
4:41–53, 1989.

[7] Y. Giora and H. Kaplan. Optimal dynamic verti-
cal ray shooting in rectilinear planar subdivisions.
ACM Transactions on Algorithms, 5(3):28:1–51,
2009.

[8] H. Imai and T. Asano. Efficient algorithms for ge-
ometric graph search problems. SIAM Journal on
Computing, 15(2):478–494, 1986.

[9] D.-T. Lee, C.-D. Yang, and C.K. Wong. Rectilinear
paths among rectilinear obstacles. Discrete Applied
Mathematics, 70(3):185–215, 1996.

[10] J.S.B. Mitchell. An optimal algorithm for shortest
rectilinear paths among obstacles in the plane. In
Abstracts of the 1st Canadian Conference on Com-
putational Geometry, volume 22, 1989.

[11] J.S.B. Mitchell. L1 shortest paths among polygonal
obstacles in the plane. Algorithmica, 8(1–6):55–88,
1992.

[12] J.S.B. Mitchell, V. Polishchuk, and M. Sysikaski.
Minimum-link paths revisited. Computational Ge-
ometry, 47(6):651–667, 2014.

[13] J.S.B. Mitchell, V. Polishchuk, M. Sysikaski, and
H. Wang. An optimal algorithm for minimum-
link rectilinear paths in triangulated rectilinear do-
mains. Algorithmica, 81(1):289–316, 2019.

[14] E. Papadopoulou and D.T. Lee. The L∞ Voronoi
diagram of segments and VLSI applications. In-
ternational Journal of Computational Geometry &
Applications, 11(05):503–528, 2001.

[15] M. Sato, J. Sakanaka, and T. Ohtsuki. A fast line-
search method based on a tile plane. In IEEE In-
ternational Symposium on Circuits and Systems,
volume 5, pages 588–591, 1987.

[16] S. Schuierer. An optimal data structure for short-
est rectilinear path queries in a simple rectilinear
polygon. International Journal of Computational
Geometry & Applications, 6(02):205–225, 1996.

[17] C.D. Toth, J. O’Rourke, and J.E. Goodman. Hand-
book of discrete and computational geometry. CRC
press, 3rd edition, 2017.

[18] H. Wang. Bicriteria rectilinear shortest paths
among rectilinear obstacles in the plane. Discrete
& Computational Geometry, 62:525–582, 2019.

[19] C.-D. Yang, D.-T. Lee, and C.K. Wong. On bends
and lengths of rectilinear paths: a graph-theoretic
approach. International Journal of Computational
Geometry & Applications, 2(01):61–74, 1992.

[20] C.-D. Yang, D.-T. Lee, and C.K. Wong. On
minimum-bend shortest recilinear path among
weighted rectangles. In Tech. Report 92-AC-122.
Dept. of EECS, Northwestern Univ, 1992.

[21] C.-D. Yang, D.-T. Lee, and C.K. Wong. Rectilin-
ear path problems among rectilinear obstacles re-
visited. SIAM Journal on Computing, 24(3):457–
472, 1995.

33rd Canadian Conference on Computational Geometry, 2021

Appendix

9 Proof of Lemma 2

Proof. We claim that every shortest path from S to t
connects the upper endpoint s of S and t for a point t ∈
D1
y ∪D1

xy ∪D2
xy. Assume to the contrary that a shortest

path π from S to t does not pass through s. Then π
crosses πru(s) (or πlu(s)) at a point t′. By replacing the
portion of π from S to t′ with the portion of πru(s) from
s to t′, we can get a shorter path, a contradiction. By a
similar argument, we observe that every shortest path
from S to t connects the lower endpoint s′ of S and t if
t ∈ D2

y ∪ D3
xy ∪ D4

xy.
Rezende et al. [6] showed that every shortest path

connecting two points in D is x-, y-, or xy-monotone.
Choi and Yap [3] gave a classification that for a point t ∈
∪1≤i≤2Diy every shortest path from S to t is y-monotone,

and for a point t ∈ ∪1≤i≤4Dixy every shortest path from
S to t is xy-monotone. Assume that t ∈ D1

x. Both
πul(t) and πur(t) intersect πru(s), and both πdl(t) and
πdr(t) intersect πrd(s

′). This implies that every shortest
path from a point in S to t is x- or xy-monotone by the
classification of Choi and Yap [3]. Hence every shortest
path from S to t is x-monotone. The case for p ∈ D2

x

can be shown similarly. �

10 Proof of Lemma 3

Proof. Assume that a minimum-link shortest path π
has a horizontal line segment H which is not contained
in any baseline of D′. Clearly, H is not incident to t,
because there is a horizontal baseline through t. If H
is incident to S not at its endpoints, we can move H
vertically and get a shorter path, a contradiction. If
both vertical segments of π incident to H are contained
in one side of the line through H, then we can get a
path shorter than π by moving H towards the side and
shortening the two vertical segments incident to H, a
contradiction. This also applies to a vertical segment of
π not contained in any baseline.

Now assume that π is xy-monotone and H is incident
to neither S nor t. Let π′ be a maximal subpath of π
such that π′ contains H, and no horizontal baseline of
D′ intersects π′ except at its two endpoints p1 and p2
with y(p1) < y(p2). See Figure 8(a). We show that the
axis-aligned rectangle R with corners at p1 and p2, is
contained in D′. Assume to the contrary that R is not
contained in D′, that is, there is a rectangle R′ ∈ R inci-
dent to D′ that intersects R. Then there is a horizontal
baseline of D′ through a side of R′ that intersects π′.
This contradicts the definition of π′, so R is contained
in D′. See Figure 8(a).

Thus, we can replace the subpath π′ with a horizon-
tal side and a vertical side of R without increasing the
length of π. See Figure 8(b). The resulting path has

R

H ′

H ′′

H
π′

R′

p1

p2

R

p1

p2

π

(a) (b)

π′

H ′

H ′′

Figure 8: Proof of Lemma 3. (a) When π′ intersects two
baselines H ′ and H ′′ at its two endpoints p1, p2, no rectangle
intersects the rectangle R (gray) with corners at p1, p2. (b)
By replacing π′ with the subpath (red or blue) along the
boundary of R, we obtain a path with a smaller or the same
number of links.

the number of links smaller than or equal to that of π.
By applying the procedure above for every horizontal
line segment not contained in a horizontal baseline of
D′, we can get a minimum-link shortest path π∗ from
s∗ to t such that every horizontal line segment of π∗ is
contained in a horizontal baseline of D′.

Similarly, we can replace every vertical segment of
π′ not contained in a vertical baseline with one con-
tained in a baseline without increasing the length of the
path. �

11 Proof of Lemma 4

Proof. At the terminate event Ez, we have λ(s, t) :=
min{M(m),M(k∗)+1}, where k∗ is the index satisfying
M(k∗) = mink∈[α(z),β(z)−1]M(k). If M(m) ≤ M(k∗),
there is a canonical segment H incident to t, so H be-
comes the horizontal segment of π that is incident to t.
Otherwise, there is a canonical segment H incident to Vz
with y(H) = y(Hk∗), and thus H and V ′z form a subpath
of π, where V ′z is the portion of Vz with y1(V ′z) = y(Hk∗)
and y2(V ′z) = y(t). For both cases, we can find the left
endpoint of H such that x1(H) = x(Vj). We know there
exists a canonical segment H ′ for the event Ej , so we do
the above process for H ′ and the V ′j to form a subpath of
π recursively, where V ′j is the vertical line segment con-
necting the left endpoint of H and the right endpoint
of H ′. See Figure 9. At the originate event E1, we have
a canonical segment H0 with x(H0) = x(s). Then the
vertical line segment connecting s and the left endpoint
of H0 forms a subpath of π. Gluing all subpaths formed
from above recursive process, we finally obtain π whose
horizontal line segments are all canonical segments. �

12 Proof of Lemma 6

Proof. Let π be a shortest path from S to t. Assume
that π has a winder H, which does not contain a hori-
zontal side of a rectangle. Since H is a winder, the two

CCCG 2021, Halifax, Canada, August 10–12, 2021

s

t

M(6) := 4

M(2) = 2

λ(s, t) = 5

H0

V ′
z

V ′
j

H

Figure 9: A minimum-link shortest path from s to t con-
sisting of three vertical segments (blue) and two horizontal
segments (red). The red horizontal segments are canoni-
cal segments in Dxy(s, t). λ(s, t) is computed by M(6) in
the terminate event. M(6) was updated in Ej so there is a
canonical segment H for Ez. H and V ′z form a subpath of
π.

consecutive xy-monotone subpaths of π sharing H lie
in one side of the line containing H. Without loss of
generality, assume that both subpaths lie above the line
containing H. Then we can drag H upward while short-
ening the vertical segments of π incident to H, which
results in a shorter path, a contradiction.

Now assume to the contrary that there is a winder
H of π containing a horizontal side of a rectangle not
incident to Dx. By the general position, H does not
contain a horizontal side of a rectangle incident to Dx.
Then the subpath of π\Dx containingH is not a shortest
path connecting its two endpoints incident to Dx. Thus,
π is not a shortest path from S to t, a contradiction. �

13 Reducing the time complexity in Section 3

To reduce the time complexity of our algorithm to
O(logm) for handling each event while keeping the
space complexity to O(n) space, we build another bal-
anced binary search tree Tseg, a variant of a segment
tree in [5]. The idea is to use Tseg together with Tran to
maintain O(logm) nodes corresponding to O(m) M(i)’s
efficiently, instead of updating M(i)’s for each event im-
mediately.

Each node w of Tseg corresponds to a sequence of base-
lines consecutive in their indices, say from α(w) to β(w)
with α(w) ≤ β(w). Let `c(w) and rc(w) be the left child
and the right child of w, respectively. A leaf node w cor-
responds to one baseline Hi, hence α(w) = β(w) = i. A
nonleaf node w corresponds to a sequence of baselines
corresponding to the leaf nodes in the subtree rooted at
w, and thus α(w) = α(`c(w)) and β(w) = β(rc(w)). We
say a node w of Tseg is inactive if all baselines with in-
dices from α(w) to β(w) are inactive. Node w is active

root

W [a, b]

V [a, b]

Ha Hb

Figure 10: A balanced binary search tree Tseg. A range
[a, b] can be represented by the O(logm) nodes in W[a, b].
For each node v ∈ V[a, b], [α(v), β(v)] ∩ [a, b] 6= ∅ and
[α(v), β(v)] 6⊆ [a, b].

otherwise.

We can represent any range of indices using O(logm)
nodes of Tseg whose ranges are disjoint. We use
W[a, b] to denote the set of nodes of Tseg such
that [a, b] = ∪w∈W[a,b][α(w), β(w)] and [α(w), β(w)] ∩
[α(w′), β(w′)] = ∅ for any two nodes w,w′ ∈ W[a, b].
We define another set V[a, b] of nodes v of Tseg such that
[α(v), β(v)]∩ [a, b] 6= ∅ and [α(v), β(v)] 6⊆ [a, b]. Observe
that the number of nodes in V[a, b] is also O(logm). See
Figure 10 for an illustration of W[a, b] and V[a, b].

For a node w ∈ Tseg, we define two values, λ(w)
and U(w) as λ(w) = mini∈[α(w),β(w)]M(i) and U(w) =
maxi∈[α(w),β(w)]M(i). We need λ(w) in computing a
minimum-link shortest path, while U(w) is used for up-
dating Tseg. We initialize both λ(w) and U(w) to ∞ for
every node w in Tseg. We update these values stored
at some nodes of Tseg at an event during the plane
sweep. At originate and terminate events, we update
λ(w) and U(w) for the leaf nodes of subtrees rooted at
w ∈ W[a, b] for a range [a, b], and also update for all w
in Tseg using values of leaf nodes in bottom-up manner.
We process other types of events in the following way:
we find λ∗ = minw∈W[a1,b1] λ(w) for a range [a1, b1],
and then update λ(u) and U(u) for u ∈ W[a2, b2] for
another range [a2, b2] disjoint from [a1, b1]. There are
three cases. (1) If u becomes inactive at the event, we
set both λ(u) and U(u) to∞. (2) If u becomes active at
the event, we set both λ(u) and U(u) to λ∗+2. Observe
that all baselines corresponding to u become active at
the event since u is in W[a2, b2]. (3) If there is no sta-
tus change in u, we set U(u) := min{U(u), λ∗ + 2} and
λ(u) := min{λ(u), λ∗ + 2}. Once λ(u) and U(u) are
updated, we also update λ(v) and U(v) for v ∈ V[a2, b2]
in bottom-up manner.

33rd Canadian Conference on Computational Geometry, 2021

Observe that we update neither λ nor U values of
the children of u during the update of λ(u) and U(u)
for u ∈ W[a2, b2]. Some nodes may have their λ and
U values outdated when they are used for finding λ∗

and updating λ an U values of other nodes. To resolve
this problem, we update λ(v′) and U(v′) for the chil-
dren v′ of each node v ∈ V[a, b] when we find W[a, b]
for every range [a, b]. Note that to compute W[a, b],
we must compute V[a, b]. By the definition of λ(v)
and U(v), we have λ(v) = min{λ(`c(v)), λ(rc(v))} and
U(v) = max{U(`c(v)), U(rc(v))}, and λ(v) ≤ U(v).

We update λ(v′) and U(v′) for two children v′ ∈
{`c(v), rc(v)} of v. If λ(v) = U(v), by the defini-
tion of λ(v) and U(v), we have λ(v′) = λ(v) and
U(v′) = U(v) for all v′. Therefore, we set λ(v′) := λ(v)
and U(v′) := U(v) for all v′.

If λ(v) < U(v), there are four subcases: (1)
λ(v) 6= minv′ λ(v′) (2) λ(v) = minv′ λ(v′) but U(v) >
maxv′ U(v′), (3) λ(v) = minv′ λ(v′) but U(v) <
maxv′ U(v′), and (4) λ(v) = minv′ λ(v′) and U(v) =
maxv′ U(v′). For the cases (1) and (2), we set λ(v′) :=
λ(v) and U(v′) := U(v) for all v′ because they are out-
dated. For the case (3), for v′ satisfying U(v) < U(v′),
we set U(v′) := min{U(v′), U(v)} and update λ(v′)
compared with U(v′). For the case (4), we already use
λ(v′) and U(v′) to update λ(v) and U(v) in bottom-up
manner, so they are not outdated and we do not change
any values.

Recall that the number of nodes inW[a, b] and V[a, b]
for a range [a, b] is O(logm), and we can find them
in O(logm) time since Tseg is a balanced binary search
tree with height O(logm). See Chapter 10 in [5]. For
each node w ∈ W[a, b] ∪ V[a, b], only a constant num-
ber of nodes are affected by an update above, and λ(u)
or U(u) for such node u can be computed in constant
time. Thus, each query in Tseg takes O(logm) time, and
we can find one canonical segment for each event in the
same time because we have λ∗. By using this data struc-
ture, we can reduce the time complexity from O(m) to
O(logm) per event. Since Tseg uses O(m) space, the
total space complexity remains to be O(n). Thus, we
have Lemma 5.

14 Handling degenerate cases in Section 4

There can be two shortest paths from S to t, one passing
through δ(R) and one passing through δ′(R) for a rect-
angle R. In this case, we have d(t, δ(R)) + d(S, δ(R)) =
d(t, δ′(R))+d(S, δ′(R)), which can be found in handling
the midpoints of R during the plane sweep. Observe
that this equality may occur multiple times in finding
dividers of a minimum-link shortest path. Thus we need
to devise an efficient way of maintaining all sequences of
dividers, each of which may define a shortest path. In
this section, we show how to maintain these sequences of

f(δ)

δπlu(δ, f(δ))

πrd(f(δ))

(a)

c

f(δ)

δπlu(δ, f(δ))

πrd(f(δ))

(b)

t

π

π

c

πul(t)

Figure 11: Proof of Lemma 12.

dividers and how to find a minimum-link shortest path
without increasing the time and space complexities in
Lemma 7.

We say two shortest paths, π1 and π2, from S to t are
combinatorially distinct if the sequence of dividers for
π1 and the sequence of dividers for π2 are different. Let
Π be the set of all combinatorially distinct sequences of
dividers from t to S for shortest paths, since we let t =
δ0 for convenience. Assume that a divider δ appearing
in a sequence of Π is the midpoint of the bottom side of
a rectangle. Observe that πlu(δ) passes through dividers
including δ that are consecutive in a sequence of Π. We
denote by f(δ) one with smallest x-coordinate among
these dividers. Observe that f(δ) is uniquely defined for
δ with x(f(δ)) < x(δ), and it is the midpoint of the top
side of another rectangle. We construct Dxy(f(δ), δ) to
compute the subpath of a minimum-link shortest path
from f(δ) to δ.

Lemma 11 For any point p in Dxy(f(δ), δ), there
are an xy-monotone path from f(δ) to p and an xy-
monotone path from p to δ, which are shortest among
paths connecting the points.

Proof. For any point p in Dxy(f(δ), δ), let c be a
point in the intersection πlu(δ) ∩ πlu(p). Then the path
obtained by concatenating the subpath of πlu(δ) from
f(δ) to c and the subpath of πlu(p) from c to p is xy-
monotone, and it is shortest among all paths from f(δ)
to p. Similarly, let c′ be a point in the intersection
πlu(δ) ∩ πdr(p). Then the path obtained by concatenat-
ing the subpath of πdr(p) from p to c and the subpath
of πlu(δ) from c′ to δ is xy-monotone, and it is shortest
among all paths from p to δ. �

Lemma 12 ∂xy(δ, f(δ)) is πlu(δ, f(δ)) and ∂xy(f(δ), δ)
is πrd(f(δ), δ).

Proof. By the definitions of f(δ) and Dxy(f(δ), δ),
∂xy(δ, f(δ)) is πlu(δ, f(δ)).

Let π be a shortest path from S to t that contains
πlu(δ, f(δ)) as a subpath. Assume that πrd(f(δ)) does
not pass through δ. If πrd(f(δ))∩π 6= ∅ except for f(δ),
let c be the last point of πrd(f(δ)) ∩ π along πrd(f(δ))

CCCG 2021, Halifax, Canada, August 10–12, 2021

δ

c′

π2

f(δ)

δ′

c

δ

π1

π3

f(δ)

δ′

c

c′

π3

(b) (c)

π2
π4

δ′

δ

c′

π1

f(δ)

c

π4

(a)

Figure 12: Proof of Lemma 13. Blue paths π1 and π2 are
subpaths of π, and red paths π3 and π4 are subpaths of π∗.
(a) If δ′ is the midpoint of the bottom side of a rectangle,
an xy-monotone path from f(δ) to c′ along πrd(f(δ)) (thick
path) is shorter than the concatenation of π1 and π4 (sub-
path of π+). (b) If δ′ is the midpoint of the top side of
a rectangle, an xy-monotone path from c to δ along πlu(δ)
(thick path) is shorter than the concatenation of π3 and π2

(subpath of π−). (c) One of thick paths is shorter than one
of two concatenations: one is of π1 and π4 (subpath of π+),
the other is of π3 and π2 (subpath of π−).

from f(δ). Since πrd(f(δ)) does not pass through δ,
πrd(f(δ)) does not intersect the portion of π from f(δ)
to δ. Thus, c is on the portion of π from δ to t. See
Figure 11(a). If πrd(f(δ)) ∩ π = ∅ except for f(δ), let
c be the last point of πrd(f(δ)) ∩ πul(t) along πrd(f(δ))
from f(δ). See Figure 11(b). Since πrd(f(δ), c) is xy-
monotone, it is shorter than the portion of π from f(δ)
to c in both cases. Thus, we can get a path from S to t
shorter than π by replacing the portion of π from f(δ)
to c with πrd(f(δ), c), a contradiction. In other words,
πrd(f(δ)) pass through δ, so it implies that ∂xy(f(δ), δ)
is πrd(f(δ), δ). �

Lemma 13 There is no divider on the inner boundary
of Dxy(f(δ), δ).

Proof. Assume to the contrary that there is a divider
δ′ on the inner boundary of Dxy(f(δ), δ). Since there
are two xy-monotone paths, one from f(δ) to δ′ and
one from δ′ to δ by Lemma 11, there is an xy-monotone
path π′ from f(δ) to δ that passes through δ′. Thus,
there is a shortest path π from S to t that contains π′

as a subpath.
Since there is a sequence of dividers containing δ′ in

Π, there is a shortest path π∗ from S to t that uses δ′

as a divider, that is, two xy-monotone subpaths of π∗

change their directions at δ′. Let π′′ be the subpath of
π∗ ∩ Dxy(f(δ), δ) that passes through δ′, and let c and
c′ be the endpoints of π′′ with x(c) ≤ x(c′). If both c
and c′ are on πlu(δ), then by replacing π′′ of π∗ by the
portion of πlu(δ) between c and c′ we can get a path
from S to t shorter than π∗, a contradiction. Similarly,
for the case that both c and c′ are on πrd(f(δ)) we can
get a shorter path both by replacing π′′ of π∗ by the
portion of πrd(f(δ)) between c and c′.

Consider the case that c is on πlu(δ) and c′ is on
πrd(f(δ)). Let π+ be the concatenation of the subpath
of π from S to δ′ and the subpath of π∗ from δ′ to t,
and π− be the concatenation of the subpath of π∗ from
S to δ′ and the subpath of π from δ′ to t. Observe that
π+ and π− should be also shortest paths from S to t.
If δ′ is the midpoint of the bottom side of a rectangle,
by replacing the subpath from f(δ) to c′ of π+ with
an xy-monotone path from f(δ) to c′ along πrd(f(δ)),
we can get a path from S to t shorter than π+. See
Figure 12(a). If δ′ is the midpoint of the top side of a
rectangle, by replacing the subpath from c to δ of π−

with an xy-monotone path from c to δ along πlu(δ), we
can get a path from S to t shorter than π−. See Fig-
ure 12(b).

Consider the case that c is on πrd(f(δ)) and c′ is on
πlu(δ). Since π′′ also uses δ′ as a divider, observe that
the subpath of π∗ from c to c′ is not xy-monotone. By
replacing the subpath from f(δ) to c′ of π+ with an xy-
monotone path from f(δ) to c′ along πlu(δ), we can get a
path from S to t and we let d1 be the length of the path.
By replacing the subpath from δ to c of π− with an xy-
monotone path from δ to c along πrd(f(δ)), we can get
a path from S to t and we let d2 be the length of the
path. Then min{d1, d2} < d(S, t), so we can get a path
shorter than either π+ or π−. See Figure 12(c). �

Lemma 14 If there is a divider δ′ lying on ∂xy(f(δ), δ),
f(δ′) and f(δ) are the same.

Proof. Let δ′ be a divider lying on ∂xy(f(δ), δ). Ob-
serve that δ′ is the midpoint of the bottom side of a
rectangle by Lemma 12. By definition, there is a short-
est path π from S to t passing through f(δ′) and δ′.
Since δ′ lies on ∂xy(f(δ), δ), πlu(δ

′) passes through f(δ)
and f(δ′) by Lemma 12.

Assume to the contrary that f(δ′) 6= f(δ). By defini-
tion, f(δ′) does not lie on ∂xy(δ, f(δ)). By Lemma 13,
f(δ′) does not lie on the inner boundary of Dxy(f(δ), δ).
Thus f(δ′) is not incident to Dxy(f(δ), δ). Since πlu(δ

′)
passes through both f(δ) and f(δ′), d(f(δ′), δ′) =
d(f(δ′), f(δ))+d(f(δ), δ′). We observe that d(S, f(δ)) <
d(S, f(δ′)) + d(f(δ′), f(δ)) since otherwise f(δ′) and δ
are consecutive in a sequence of Π, so it violates the
definition of f(δ).

33rd Canadian Conference on Computational Geometry, 2021

(b)

t

S

v U

V

u

δ

δ

f(δ)

4

3

46

6
6

5 → 4
Ha

Dxy(f(δ), δ)

(a)

δ′

Figure 13: (a) Dxy(f(δ), δ) where δ is the divider such that
g(f(δ)) = δ. Points including δ and δ′ lying on ∂xy(f(δ), δ)
are dividers as originate events, and points including f(δ) ly-
ing on ∂xy(δ, f(δ)) are dividers as terminate events. During
the plane sweep, M(a) = 5 before the sweep line encounters
δ′. When the line encounters δ′, M(a) is updated since we
know λ(δ, t) is 4. (b) A directed acyclic graph with con-
structed xy-monotone subregions. Each xy-monotone sub-
regions correspond to vertices of the graph represented as
circles. Both the outer boundaries of the two regions U and
V corresponded to u and v contains δ. δ is an terminate
event in U and an originate event in V . To apply the plane
sweep algorithm in V , λ(δ, t) should be computed first, so
there exists a directed edge (u, v).

Adding d(f(δ), δ′) to the both sides of the inequal-
ity, we have d(S, δ′) < d(S, f(δ′)) + d(f(δ′), δ′). This
contradicts that π is a shortest path from S to t. �

For a fixed divider δ, there are dividers each of
which appear before δ consecutively in a sequence in Π.
Among those dividers, we let g(δ) be the divider with
the largest x-coordinate. Let δ be a divider satisfying
g(f(δ)) = δ. By Lemma 12, Dxy(f(δ), δ) is bounded
by πlu(δ, f(δ)) and πrd(f(δ), δ). By Lemmas 12 and 14,
Dxy(f(δ), δ) contains all Dxy(δi, δj)’s, where δi is a di-
vider lying on πlu(δ, f(δ)) and δj is a divider lying on
πrd(f(δ), δ) such that δi and δj are consecutive in a se-
quence of Π. After constructing Dxy(f(δ), δ), we can
compute a minimum-link shortest path among all short-
est paths from δi to δj using the plane sweep algorithm
in Section 3.

We first find a divider δ such that g(f(δ)) = δ ap-
pearing in a sequence of Π. By choosing a divider
in decreasing order of the x-coordinate, we can easily

find such δ. We find f(δ) and construct Dxy(f(δ), δ).
In Dxy(f(δ), δ), we apply the algorithm in Section 3.
In the algorithm, each divider, including δ, lying on
∂xy(f(δ), δ) is considered as an originate event, and each
divider, including f(δ), lying on ∂xy(δ, f(δ)) is consid-
ered as an terminate event. See Figure 13(a).

To apply the plane sweep algorithm in Section 3, we
must have λ(δ′, t) in advance for each divider δ′ consid-
ered as an originate event. When the sweep line encoun-
ters δ′, we update M(a) := min(M(a), λ(δ′, t)), where
a is the index of the horizontal baseline incident to δ′.
When the sweep line encounters δ′ considered as a ter-
minate event, we can compute λ(δ′, t) := M(a), where
a is an index of the horizontal baseline incident to δ′.
Then λ(δ′, t) can be used when δ is considered as an
originate event in other xy-monotone subregions.

Recall that t and the closest points of S from t
are not divider, but they also construct xy-monotone
subregions. If t = δ, Lemma 12 does not hold, but
Dxy(f(t), t) has no divider on ∂xy(f(t), t) except f(t)
and t. Therefore, we do not have to change the origi-
nate event in Dxy(f(t), t). If f(δ) is the closest point s
of S from t, Lemma 12 does not hold, but Dxy(s, g(s))
has no divider on ∂xy(g(s), s) except g(s) and s. There-
fore, we do not have to change the terminate event in
Dxy(s, g(s)).

Therefore, to compute λ(δ′, t) at the terminate event,
where δ′ lies on ∂xy(δ, f(δ)), we have to know λ(δ′′, t)
at the originate event, where δ′′ lies on ∂xy(f(δ), δ). It
implies that there is an order among xy-monotone sub-
regions to compute a minimum-link shortest path cor-
rectly. With the order, we can construct a directed
acyclic graph, which is a dual graph of the xy-monotone
subregions. Each node v of the graph corresponds to
Dxy(f(δ), δ). We connect a directed edge from u to v if
the two subregions corresponding to u and v are adja-
cent, and the subregion corresponding to u has a divider
δ as a terminate event, and the subregion corresponding
to v has δ as an originate event. See Figure 13(b).

Then we can compute λ(S, t) using a sequence of xy-
monotone subregions corresponding to a path in the
dual graph. Recall that during the plane sweep for each
xy-monotone subregion, we construct canonical seg-
ments to find a minimum-link shortest path whose hor-
izontal line segments are all canonical segments. Since
the xy-monotone subregions are disjoint in their interi-
ors, we can report an xy-monotone path using canonical
segments by Lemma 4, and glue them to get a minimum-
link shortest path from S to t.

Since one rectangle has at most two dividers, there
are O(n) dividers and O(n) closest pairs of S and t. By
Lemmas 12 and 14 with the property of Dxy(f(δ), δ),
there are at most two xy-monotone subregions incident
to a divider that we construct during the plane sweep.
Thus, there are four such subregions incident to a rect-

CCCG 2021, Halifax, Canada, August 10–12, 2021

angle. Also, those subregions are disjoint in their inte-
riors by Lemma 13.

Lemma 15 During the plane sweep, we construct O(n)
xy-monotone subregions defined by pairs of dividers
whose total complexity is O(n). By using these sub-
regions, we can compute a minimum-link shortest path
in O(n log n) time using O(n) space.

15 S or T intersects bounding boxes in Section 6

Each horizontal or vertical line segment contained in C
intersects at most two bounding boxes of polygons in
RP , and thus it can be partitioned into at most three
pieces, one disjoint from the rectangles of R, and the
other two, each contained in the bounding box of a poly-
gon in RP . This applies to S and T . Thus, in order to
find a minimum-link shortest path from S to T , we need
to consider at most 9 pairs, each consisting of one piece
of S and one piece of T , and find a minimum-link short-
est path for each pair. We can handle the pair consisting
of the pieces of S and T disjoint from the rectangles of R
using the method in Section 6. In this section we show
how to handle the remaining 8 pairs. Each such pair
has at least one piece of S or T that is contained in the
bounding box of a polygon in RP .

Without loss of generality, we assume that S is con-
tained in B(P) of P ∈ RP in the following. Let CS be
the the component among the connected components of
B(P)\ cl(P) that contains S, where cl(P) is the closure
of P .

15.1 T intersecting CS

We first consider the case that T ∩ CS 6= ∅. We as-
sume that T is a vertical line segment. The case that
T is a horizontal line segment can be handled analo-
gously. Observe that any closest point of T from S lies
on T ′ = T ∩ CS , that is, the problem reduces to com-
puting a minimum-link shortest path from S to T ′ in
the rectilinear polygon CS . To ease the description, we
simply assume that T is contained in CS . There exists
a shortest path from S to T which is not x-, y-, or xy-
monotone. However, CS is the rectilinear polygon with-
out holes, so we can use the algorithm of Schuierer [16],
which computes a minimum-link shortest path connect-
ing two points in a rectilinear polygon.

Lemma 16 If no axis-aligned line segment contained
in CS connects S and T , the closest pair of S and T is
unique.

Proof. We show that the closest points of S from any
points of T are the same. Then by symmetry, the closest
points of T from any points of S are the same, and thus
the lemma holds. Assume to the contrary that there

are two distinct closest points s1 and s2 in S from two
closest points t1 and t2 in T , possibly t1 = t2, respec-
tively. Let π1 and π2 be the shortest paths such that π1
connects s1 and t1, and π2 connects s2 and t2. Clearly,
both π1 and π2 are contained in CS .

Since S is vertical, the segments of π1 and π2 inci-
dent to s1 and s2 are horizontal, respectively. Let s′

be the point in S such that y(s′) = (y(s1) + y(s2))/2,
and H be the maximal horizontal segment contained in
CS that contains s′. Since no axis-aligned line segment
contained in CS connects S and T , H does not intersect
T but it intersects π1 or π2 at a point p. Then we can
get a shorter path from S to T by replacing the sub-
path from s1 to p of π1 (or from s2 to p of π2) with the
segment s′p, a contradiction. �

If there is an axis-aligned line segment in CS connect-
ing S and T , the line segment is a minimum-link shortest
path. Otherwise, for a point t ∈ T , we find d(s, t) for ev-
ery intersection point s of S and the horizontal baselines
of C. Lemma 3 also holds in C, so one of those intersec-
tion points is the closest point of S from T . Let s∗ ∈ S
be the point achieving d(s∗, t) = mins d(s, t). Then s∗ is
the closest point of S from T by Lemma 16. From s∗, we
find the point t∗ ∈ T achieving d(s∗, t∗) = mint d(s∗, t)
among all intersection points t of T and the horizontal
baselines of C. Finally we find two points s∗ and t∗,
so we can compute λ(s∗, t∗) using the data structure of
Schuierer [16] directly.

We compute the bounding boxes of the polygons in
RP and CS in O(n) time. We construct the data struc-
ture of Schuierer [16] with O(n) time and space for a rec-
tilinear polygon Q with n edges that given two points p
and q in Q, reports d(p, q) and λ(p, q) in O(log n) query
time, and a minimum-link shortest path from p and q
in O(log n + K) time, where K is the number of links
of the path. Since there are O(n) baselines in C, we can
find s∗ and t∗ in O(n log n) time using the data struc-
ture, and a minimum-link shortest path from s∗ to t∗ in
O(n) time since K = O(n).

15.2 T disjoint from CS

Consider the case that T is disjoint from CS . The por-
tion of the boundary of CS which is not incident to
P consists of a horizontal segment HS and a vertical
segment VS . We assume that T is also contained in a
connected component CT of B(P ′) \ cl(P ′) for a poly-
gon P ′ ∈ RP . Let HT and VT for T be the horizontal
segment and a vertical segment of the portion of the
boundary of CT which is not incident to P ′.

We compute minimum-link shortest paths from S to
T passing through HS ∪ VS and HT ∪ VT , and then we
choose the optimal path among them. In the following,
we show how to compute a minimum-link shortest path
from S to T passing through VS and VT . The other

33rd Canadian Conference on Computational Geometry, 2021

cases can be handled analogously. If no axis-aligned
line segment contained in CS connects S and VS , the
closest pair (s∗, v∗) of S and VS is unique by Lemma 16.
Thus, d(S, v) = d(s∗, v) = d(s∗, v∗) + d(v∗, v) for any
point v ∈ VS . Similarly, the closest pair (t∗, u∗) of T
and VT is also unique if no axis-aligned line segment
contained in CT connects T and VT . In this case we
have d(T, u) = d(t∗, u) = d(t∗, u∗) + d(u∗, u) for any
point u ∈ VT .

Lemma 17 If the closest pair (s∗, v∗) of S and VS is
unique, and there is a shortest path from S to T passing
through VS, there is a shortest path from S to T passing
through v∗.

Proof. Let π be a shortest path from S to T that
passes through a point v ∈ VS \ {v∗}. Since d(s∗, v) =
d(s∗, v∗) + d(v∗, v), we have |π| = d(S, T) = d(s∗, v) +
d(v, T) = d(s∗, v∗)+d(v∗, v)+d(v, T). Let π∗ be a path
from S to T consisting of a shortest path from s∗ to
v∗ and a shortest path from v∗ to T . Since d(v∗, T) ≤
d(v∗, v) + d(v, T), we have |π∗| = d(s∗, v∗) + d(v∗, T) ≤
|π| = d(S, T). Thus, π∗ is also a shortest path from S
to T . �

We compute a minimum-link shortest path from S to
T as follows. Let QS be the set of intersection points
of VS with the horizontal baselines in C, and QT be
the set of intersection points of VT with the horizontal
baselines in C. Let λH(X,Y) is the minimum num-
ber of links of all shortest paths connecting two sets
X and Y whose segments incident to Y are horizon-
tal. We first compute d(S, v) and λH(S, v) for every
point v ∈ QS . We also compute d(T, u) and λH(T, u)
for every point u ∈ QT . By Lemma 17, once we have
the unique closest pairs (s∗, v∗) and (u∗, t∗), their dis-
tances d(s∗, v∗), d(v∗, u∗), d(u∗, t∗), and their minimum
numbers of links λH(s∗, v∗), λH(v∗, t∗), we can compute
a minimum-link shortest path π from S to T passing
through s∗, v∗, u∗ and t∗ in order. Note that we do
not guarantee that π is a minimum-link shortest path
from S to T . However, we can compute a minimum-link
shortest path while we compute λH(v∗, t∗) as follows.

Once we have v∗, u∗, and d(v∗, u∗), we apply the al-
gorithm in Section 6. In the algorithm, we construct
xy-monotone subregions. Let D(v∗) and D(u∗) be the
xy-monotone subregions incident to v∗ and u∗, respec-
tively. We may have D(v∗) = D(u∗) = Dxy(v∗, u∗) if a
shortest path from v∗ to u∗ is xy-monotone.

Consider a point v ∈ QS that is incident to D(v∗).
Then d(s∗, v) = d(s∗, v∗) + d(v∗, v), v lies on the outer
boundary of D(v∗), and d(v∗, v) + d(v, t∗) = d(v∗, t∗).
Thus, we have d(s∗, v) + d(v, t∗) = d(s∗, v∗) + d(v∗, t∗).
Once λH(v, t∗) is computed for every point v of QS
that is incident to D(v∗), we can find a minimum-link
shortest path from S to T . If v ∈ QS is not inci-
dent to D(v∗), we have d(v∗, v) + d(v, t∗) > d(v∗, t∗),

and thus no shortest path from S to T passes through
v. This observation can also be applied for points in
QT that are incident to D(u∗). The plane sweep al-
gorithm starts with updating M(i)’s for the horizontal
baselines Hi intersecting the vertical line segment V of
the outer boundary of D(u∗) corresponding to the orig-
inate event. At the originate event, those M(i)’s are
initialized to λH(t∗, V ∩Hi). Observe that every inter-
section point V ∩Hi is in QT . It also computes M(i)’s
for the horizontal baselines Hi intersecting the verti-
cal line segment of the outer boundary of D(v∗) corre-
sponding to the terminate event. Hence one of M(i)’s
corresponds to λH(t∗, v∗) at the terminate event. By
choosing the minimum of λH(s∗, v) + λH(v, t∗) − 1 for
all v ∈ QS incident to D(v∗), we finally obtain λ(S, T),
and compute a minimum-link shortest path from S
to T . Recall that to reduce the time complexity to
O(n log n), we do not maintain M(i)’s explicitly, but
focus on the minimum of M(i)’s using O(log n) nodes
of Tseg as we do in Section 13. However, we observe
that λH(s∗, v∗) + c = λH(s∗, v) for every point v of QS ,
where c ∈ {0, 1, 2}. Therefore, by storing for each node
w of Tseg, λ(w), U(w), and the second minimum and
the third minimum of M(i)’s for i ∈ [α(w), β(w)], we
can compute a minimum-link shortest path from S to
T without increasing time and space complexities.

If the closest pair of S and VS is not unique, there is a
maximal line segment V ′ ⊆ VS such that for every point
p ∈ V ′, the shortest path from S to p is a horizontal line
segment in CS . Recall that our algorithm uses the point
v∗ in VS if the closest pair (s∗, v∗) of S and VS is unique.
Hence, instead of using v∗, we apply the algorithm using
V ′ and then we can compute a minimum-link shortest
path.

Again using the data structure of Schuierer [16], we
can compute d(S, v) and λH(S, v) for all v ∈ QS (and
d(T, u) and λH(T, u) for all u ∈ QT) in O(n log n) time.
Then we use the algorithms in Section 6 based on the
methods in Sections 3 and 4 to compute d(v∗, u∗). Ob-
serve that the time and space complexities remain the
same as stated in Lemma 9. The initialization of M(i)’s
at the originate event of D(u∗), and the computation of
λH(T, u∗) using M(i)’s at the terminate event of D(v∗)
do not affect the time and space complexities asymptot-
ically. Therefore, we have the following theorem.

Theorem 18 Given two axis-aligned line segments S
and T in a box-disjoint rectilinear domain with n ver-
tices in the plane, we can compute the minimum-link
shortest path from S to T in O(n log n) time using O(n)
space.

	Introduction
	Preliminaries
	Eight disjoint regions of a rectangular domain

	t lies in Dxy
	Computing the minimum number of links
	Computing a minimum-link shortest path

	t lies in Dx or Dy
	Extending to a line segment T
	Extending to box-disjoint rectilinear polygons
	Extending to two polygons S and T
	Conclusion
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 6
	Reducing the time complexity in Section 3
	Handling degenerate cases in Section 4
	S or T intersects bounding boxes in Section 6
	T intersecting CS
	T disjoint from CS

