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Abstract

We want to find an approximate shortest path for a point robot moving in a planar
subdivision. Each face of the subdivision is associated with a convex distance function that
has the following property: its unit disk contains a unit Euclidean disk, and is contained
in a Euclidean disk with radius ρ. Obstacles are allowed, so there can be regions that the
robot is not allowed to enter. We give an algorithm that, given any two points s and t,
finds an approximate shortest path between s and t whose length is at most (1 + ε) times
the length of the shortest path. When n is the number of vertices in the input subdivision,
the running time of our algorithm is O((ρn3/ε2) log(ρ) log(nρ/ε)). This bound does not
depend on any other parameters, in particular it does not depend on the minimum angle
in the subdivision. As special cases, we can solve the following two problems within the
same time bound:

• the weighted region problem where all weights are in [1, ρ] ∪ {+∞},
• shortest paths in the flow field when the speed of the robot is 1 and the speed of the

flow is at most (ρ− 1)/(ρ + 1).

1 Introduction

Previous work on related shortest paths problems [1, 2, 3, 6, 7, 8, 9, 10, 11, 12]. Convex
distance functions [4].

2 Convex distance functions

Let B denote a convex subset of R2 containing the origin in its interior. The convex distance
function dB associated with B is defined as follows:

∀a, b ∈ R2, dB(a, b) = inf{λ | λ > 0 and b ∈ a + λB}.

We say that B is the unit ball of dB. Note that in general, it is not a metric because dB(a, b)
is not necessarily equal to dB(b, a). However, such a function satisfies the triangle inequality:

∀a, b, c ∈ R2, dB(a, b) + dB(b, c) 6 dB(a, c).
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When ρ > 1, we say that the convex distance function dB is a ρ–convex distance function
if B contains the unit Euclidean disk centered at the origin and if B is contained in the
Euclidean disk with radius ρ centered at the origin.

A convex set B is strictly convex if, for any two points a and b on its boundary, the interior
of the line segment ab is contained in the interior of B. We will say that dB is a ρ–strictly
convex distance function if it is ρ–convex and if B is strictly convex. In particular, it means
that, using the distance function dB, and for any two points a and b, the line segment ab is
the (unique) shortest path between a and b.

We denote by d(a, b) the Euclidean distance between a and b. For any ρ > 1, this distance
is a ρ–strictly convex distance function.

3 Shortest paths in an anisotropic triangulation

Let ρ > 1 denote a real number. Let T be a triangulation in R2 with n faces, and possibly
with holes. Each face f of T is associated with a ρ–strictly convex distance function df . A
point robot moves within T , and the time needed by the robot to move from a point a ∈ f
to a point b ∈ f (without leaving f) is df (a, b). We are interested in finding approximate
shortest paths for this robot when it moves from a point s that lies on an edge of T to another
point t that lies on an edge of T .

We do not deal explicitly with the case where an edge is associated with a convex distance
function. This cases can be handled by conceptually replacing such an edge by a triangle with
a zero–length edge. Similarly, we do not allow edges to be obstacles, we can replace such an
edge by a degenerate triangular hole. When the robot moves along an edge e bounding faces
f and f ′, we will consider that its speed is given by df or d′f , whichever is most favorable
in his direction of travel. This is to modelize the fact that the robot can choose to travel
arbitrarily close to e, either in the interior of f or the interior of f ′.

We are interested in optimal paths when the robot moves from s to t.

Lemma 1 Any optimal path is a polyline, and each vertex of this path lies on an edge of T .

Proof: As we noted above, the shortest path within a face of T is a straight line segment,
which proves the second part of the statement.

Antoine complains: Actually I don’t have a proof for the first part (the shortest path
is a polyline). There is a proof for the (anisotropic) weighted case in the article by Mitchell
and Papadimitriou [8], Lemma 3.1, but it’s not convincing. Take for instance the boat–sail
problem where winds are spiraling around t and the boat has speed 0. Then the unique path,
and thus shortest, is a spiral with an infinite number of edges, and the boat–sail distance is
still finite. (Of course this example does not apply to our situation because the unit balls do
not contain the origin in their interior, but it shows that the problem is non–trivial). Still I
think it works in our case, but it may require more than arguments from discrete geometry.
(functional analysis, control theory?)

Antoine complains: If we cannot solve it we may forget about the boat–sail case, which
would be a pity, or we may be able prove an approximate version of Lemma 2 that does not
require Lemma 1: there is an ε–approximate shortest path with length polynomial in n, ρ and
1/ε.

Assume that ps→t is a polyline starting at s and ending at t, with all its vertices on edges
of T . We will denote the sequence of vertices of ps→t by (p1, p2, . . . , pk+1), where s = p1,
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t = pk+1 and each pi lies on an edge of T . So ps→t is the concatenation of the line segments
pipi+1. We denote by w(ps→t) the weighted length of ps→t. In other words, if we denote by
di the convex distance function associated with the face of T that contains pipi+1, then we
have

w(ps→t) = w(p1, p2, . . . , pk+1) =
k∑

i=1

di(pi, pi+1).

We are interested in the number of edges that such a path ps→t with smallest weighted length
w(ps→t) can have.

Lemma 2 There exists a shortest path ps→t with at most 18n2 edges.

Proof: Remember that T is a triangulation with n faces, therefore it has at most 2n edges
and 3n vertices. A shortest path cannot cross the same point twice, so it contains at most 3n
vertices of T . We consider a shortest path ps→t that contains a maximum number of vertices
of T .

Let pij = (pi, pi+1, . . . , pj) be a subpath of ps→t such that no point in {pi+1, pi+2, . . . , pj−1}
is a vertex of T . We will show that, for any edge e of T , at most two points in
{pi+1, pi+2, . . . , pj−1} lie on e. Then the lemma follows from the fact that T has at most
2n edges and 3n vertices.

So let us assume, for a contradiction, that three vertices of pij lie inside e. The subpath
pij intersects e along line segments or isolated points. So there must be two vertices pa and
pb of pij contained in e, with a < b, and such that the open line segment ab does not intersect
pij . Now we distinguish between several cases:

(i) Suppose that pa and pb are two isolated points along pij ∩ e. For any δ ∈ R, we consider
the point pa(δ) that lies on the line ab, and such that the signed distance papa(δ) is
δ (we orient the line ab such that papb > 0). Let e′ denote the edge of T containing
pa+1 and let `′ be the support line of e′. We define the point pa+1(δ) as the point in
`′ such that papa+1 is parallel to pa(δ)pa+1(δ). By repeating this process, we construct
a path pab(δ) = (pa, pa(δ), pa+1(δ), . . . , pb(δ), pb) such that, for all k ∈ [a, b], the edge
pk(δ)pk+1(δ) is parallel to pkpk+1 and the point pk(δ) belongs to the support line of
the edge of T that contains pk. Let [δ−, δ+] be the maximal interval containing 0 such
that, for all δ ∈ (δ−, δ+), and for all k ∈ [a, b], the point pk(δ) is not a vertex of T . It
is easy to see that w(pab(δ)) is an affine function of δ. Therefore w(pab(δ)) achieves its
minimum over [δ−, δ+] at δ− or δ+. Then the path obtained from ps→t by replacing
pab by pab(δ−) or pab(δ+) has weight at most the weight of ps→t, and contains a larger
number of vertices of T , a contradiction.

(ii) (sketch) Suppose that the line segment pbpb+1 is contained in e. It’s easy to see that
pb−1pb and pb+1pb+2 are contained in the same face. Applying the same transformation
at in case (i), we have to consider the case where the length of pbpb+1 shrinks to 0. It
also yields a contradiction, because then pb−1(δ)pb+1pb+2 is a path with a corner that
lies entirely within a face of T , so it cannot be a subpath of an optimal path.

(iii) (sketch) Suppose that the line segments pa−1pa and pbpb+1 are contained in e. Replace
pab by (pa−1, pa(δ), pa+1(δ), . . . , pb(δ), pb+1) and reach a contradiction.
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4 Algorithm

4.1 Algorithm

Antoine complains: This is just a sketch. We need to introduce the geodesic path. Com-
pute the (non–weighted) geodesic distance dg(s, t). Consider the squares Si centered at the
midpoint of st with edge length ρ dg(s, t)/2i for i ∈ {0, 1, . . . , dlog(ρ)e}. For all i and for all
face f of T , place Steiner points equally spaced along the boundary of f ∩ Si, with spacing
ε dg(s, t)/(36n22i). For each face f construct a (1+ε)–spanner of the union of the vertices of f
and the Steiner points on the boundary of f (use the Yao graph, see section 4.1 in Eppstein’s
survey [5]). Compute a shortest path pε

s→t from s to t in the union G of these spanners (use
for instance the algorithm shortespathtree in Tarjan’s book [13]). Output pε

s→t.

4.2 Analysis

In total, we placed O((ρn3/ε) log ρ) Steiner points, so G has O((ρn3/ε2) log ρ) edges. So our
algorithm runs in time O((ρn3/ε2) log(ρ) log(ρn/ε)).

4.3 Correctness

Let ps→t = (p1, p2, . . . , pk+1) be a shortest path with k 6 18n2. First notice that its weight is
at most the weight of the geodesic path from s to t, so the Euclidean length of ps→t is at most
ρ dg(s, t) and thus ps→t is contained in S0. Let i0 denote the largest index i such that ps→t is
contained in Si. Then we know that the Euclidean length of ps→t is at least (ρ/2i0) dg(s, t),
and therefore

w(ps→t) >
1

2i0
dg(s, t) (1)

For each pi lying in the interior of an edge e of T , let p′i denote the Steiner point on e that is
closest to pi. Notice that

d(pi, p
′
i) 6

ε

36n22i0
dg(s, t). (2)

Let p′s→t = (p′1, p
′
2, . . . , p

′
k+1) (clearly p1 = p′1 = s and pk+1 = p′k+1 = t). For all i we denote

by di the convex distance function associated with the face containing pi, pi+1 ,p′i and p′i+1.
Then the triangle inequality gives us

w(p′s→t) =
k∑

i=1

di(p′ip
′
i+1)

6

(
k∑

i=1

di(p′ipi) + di(pi+1p
′
i+1)

)
+

k∑
i=1

di(pipi+1)

6

(
k∑

i=1

d(p′ipi) + d(pi+1p
′
i+1)

)
+ w(ps→t).

By Equation (2), it yields

w(p′s→t) 6

(
k∑

i=1

2
ε

36n22i0
dg(s, t)

)
+ w(ps→t).
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Remember that k 6 18n2, so

w(p′s→t) 6
ε

2i0
dg(s, t) + w(ps→t)

and thus by Equation (1) we obtain

w(p′s→t) 6 (1 + ε) w(ps→t).

5 Applications

Extend from triangulation to arbitrary planar subdivision. Application to flow fields and
weighted regions. Explain how to handle non strictly convex distance functions.

6 Conclusion

We can improve the running time of our algorithm by guessing i0, and thus replace the log ρ
factor by log log ρ in our time bound. This improvement is rather small; the challenge is to
remove completely the dependency in ρ at least in the isotropic case, which would give the first
strongly polynomial time approximation scheme for the weighted region problem—Mitchell
and Papadimitriou gave a polynomial time approximation scheme, but it depends on the bit
complexity of the input.
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