
Smallest Intersecting Circle for a Set of Polygons

Peter Otfried Joachim Christian Marc Esther

René Michiel Antoine Alexander

October 4, 2005

1 Introduction

Motivated by automated label placement of groups of islands, we consider the
following problem: given a set S = {P1, . . . , Pm} of m polygons, with n vertices
in total, find the circle c of smallest radius such that c intersects Pi for 1 ≤ i ≤ m.

2 The Furthest Polygon Voronoi Diagram

The center of the optimum circle lies on an edge or vertex of the furthest poly-
gon Voronoi diagram (FPVD). The furthest polygon Voronoi diagram is the
subdivision of the plane such that within each cell, one polygon of the set is
the furthest polygon (where the distance of a point to a polygon is the shortest
distance); see Figure 1 for an illustration.

Figure 1: The furthest polygon Voronoi diagram.

The FPVD of a set of m polygons with n vertices in total is an abstract
furthest site Voronoi diagram [9]. Algorithms to compute abstract furthest site
Voronoi diagrams require O(n log n) time, assuming that sites and bisectors
have constant complexity. In our situation, we cannot use these results directly,
because bisectors can have complexity O(n). However, the fact that the diagram
has O(m) cells does hold. By Euler’s formula, this implies that the number of
vertices of degree three is O(m) as well. Although the bisectors can have linear
complexity in n, we show that the number of vertices of degree two is O(n).

1



Lemma 1 The FPVD has O(n) vertices of degree two.

Proof.Just a sketch.. An FPVD-vertex v of degree two lies on a bisector
between two polygons, and is defined by two features of one of the polygons,
and one of the features of the other. Imagine a circle c that touches two features
f1 and f2 of the polygon Pi and whose center lies on b(f1, f2). If we move the
center of c over b(f1, f2), we grow the radius rc. At a certain position tstart, we
start intersecting all polygons Pj , for 1 ≤ j ≤ m, and at another position tend,
we (might) stop intersecting all polygons. In any case, the portion of b(f1, f2)
on which the circle ct intersects all polygons is a single connected component.
Exactly the two end points of this connected component yield a degree-two
vertex in the FPVD. So, all bisectors in the Voronoi diagrams of individual
polygons produce at most two vertices in the FPVD. Therefore, we have that
the number of degree-two vertices of the FPVD is

∑
1≤i≤m O(ni) = O(n).

Since the FPVD has total complexity O(n), we can construct it in an incre-
mental way in O(mn log n) time. The algorithm is described below and is taken
from [10]. We are given a set {P1, P2, . . . , Pm} of polygons, with {n1, n2, . . . , nm}
vertices, respectively, and we perform the following steps:

1. Compute a rectangle R that encloses all m polygons.

2. Compute the bisector of P1 and P2 and overlay this with the boundary of
R; we denote this subdivision of R by S2.

3. For i = 3..m do:

(a) Compute the (closest) Voronoi diagram of Pi and overlay it with R.

(b) Traverse the two overlays of R, one with Si−1 and one with VD(Pi)
simultaneously; update the overlay with Si−1 such that it includes
the parts where Pi is further than all polygons Pj , for 1 ≤ j ≤ i.

(c) For all points on the boundary where there is a Pj that is equally far
as Pi, overlay the bisector of Pi and Pj with the cell of Pj in Si−1.
This gives us all boundaries between the cells of Pi and Pj in Si. The
boundary intersections give cells of of other polygons with which Pi

also has a boundary, and these are treated in the same way. When
we have found all bisectors for Pi starting at the boundary of R, we
add the relevant bisector pieces, and we have constructed Si from
Si−1.

When we add polygon Pi with ni vertices, we construct its Voronoi diagram
in O(ni log ni) time [1, 11]. By Lemma 1, simultaneous traversal of the boundary
of R takes at most O(n) time. The bisector with Pj can be computed in O((ni +
nj) log(ni+nj)) time [11, 1], and the intersection with the cell of Pj can be done
in the same amount of time, asymptotically [2, 3]. Since

∑
1≤i≤m ni = n, the

time needed to add Pi is O(n log n), from which the O(mn log n) time bound
for the construction of Sm follows.

We have a linear number of candidates for the location of the center of the
smallest intersecting circle, namely all vertices and edges of Sm. For each edge
or vertex of the FPVD, we know which (two or three) polygons are furthest
away, and thus we can compute in O(1) time what the radius of the smallest
intersecting circle with its center located at the candidate location is. Finally,
we choose the candidate circle with the smallest radius.

2



3 Special Cases

3.1 Convex Polygons

In this section, we look at the special case in which all polygons in S are convex,
and develop an O(n log n) time decision problem. We then apply parametric
search [8] to obtain an O(n log2 n) time algorithm for the optimization problem.

In the decision problem, we are given a radius r, and we want to determine
whether there exists a circle cr that intersects Pi for 1 ≤ i ≤ m. The first
step is to compute the Minkovski sum of all polygons with a disk of radius
r. If the answer to the decision problem is yes, then these blown-up polygons
have a nonempty intersection. Because all polygons are convex, their Minkovski
sums are convex as well, and thus we can compute their common intersection
in O(n log n) time.

Peter found this paper [7], which presents an O(n) time algorithm to com-
pute the smallest radius for which there exists a disk that intersects all convex
polygons.

3.2 Rectilinear Polygons

Now we look at the rectilinear version of our problem: all edges of the polygon
are axis–parallel and the metric is the L∞ metric.

We first describe our decision algorithm for radius r. We blow up each
polygon Pi by an L∞ radius r, and obtain a polygon Pi(r). If ni denotes the
number of vertices of Pi, then Pi(r) is a rectilinear polygon with at most ni

vertices, so it can be partitioned into O(ni) axis–parallel rectangles. We now
have a collection of O(n) axis–parallel rectangles and we want to decide whether
m of them have a common intersection. An algorithm by Asano and Imai [6]
achieves this in O(n log n) time.

Let X = {x1, x2, . . . , xn} be the set of x–coordinates of the vertices of the
input polygons, and let Y = {y1, y2, . . . , yn} be the set of the y–coordinates.
Notice that the optimal radius r is equal to xi − xj or yi − yj for some i, j ∈
{1, . . . , n}. In other words, we only need to consider values of r in (X ∪ Y ) −
(X∪Y ). Using an algorithm by Johnson and Frederickson [4], for any integer k,
we can find the k–th smallest element of (X ∪ Y )− (X ∪ Y ) in time O(n log n).
As the cardinality of (X ∪ Y )− (X ∪Y ) is O(n2), using our decision algorithm,
we can find r∗ by binary search in time O(log(n2)n log n), which is O(n log2 n)
time.

4 Approximation Algorithm

In this section, we present an O(n
√

n) time 2-approximation algorithm for the
problem.

Consider we are given an optimum solution copt with radius ropt. By de-
finition, copt intersects all polygons in S, and thus all Pi’s have at least one
boundary point that lies on copt. Now take any polygon Pi and a point p that
lies in opt ∩ ∂Pi. If we place a circle c centered at p, with radius 2ropt, then
we have that c ⊃ copt. Therefore, if we would find the optimum circle that
intersects all Pj , j 6= i, and which has its center on the boundary of Pi, we find
a circle with radius at most two times ropt and thus we have a 2-approximation.

3



Since the above argument holds for any polygon in S, we choose the small-
est one, say Pk. The number of edges of Pk is at most n/m. Finding the
optimum over the boundary of Pk requires that we compute the optimum over
each of the n/m edges. To compute the optimum on an edge e, we look at
the distance functions of the other edges, restricted to the supporting line of e.
For each polygon Pj , j 6= i, we compute the lower envelope of the (bivariate)
distance functions of its edges on e, and then we compute the upper envelope
of the m lower envelopes. This upper envelope has linear complexity, and can
be computed in O(n log n) time. Therefore, we can find a 2-approximation in

O(n2

m
log n) time. @Christian: Can you fill in the details of the last two claims?

Recall from Section 2 that we can compute the exact optimum solution in
O(mn log n) time. If we run the exact and approximation algorithms in parallel,

with running times O(n2

m
log n) and O(mn log n) time, and stop whenever the

first algorithm terminates, we are guaranteed to have a 2-approximation. The
minimum of the two running times is O(n

√
n).

5 3sum-hardness

We show that the problem Smallest-Intersecting-Circle of finding the
smallest intersecting circle for a given set of m non-disjoint simple polygons is
3sum-hard, by showing that deciding whether the m polygons have a point in
common is 3sum-hard (Empty-Polygon-Intersection). We give a reduction
from the problem Strips-Cover-Box in which we want to decide whether the
union of a set of n strips covers a given axis-parallel rectangle R completely.
This problem is known to be 3sum-hard [5].

Let S = {S1, . . . , Sn} be the set of strips, and B be an axis-parallel rectangle,
that are the input of Strips-Cover-Box; we transform this into an instance
of Empty-Polygon-Intersection in the following way:

BB

Si

(a) (b)

Pi = B\Si

Si

Pi

Figure 2: (a) The complement of Si within B is connected. (b) The complement
of Si within B is disconnected.

• We create a set P of polygons. For every strip Si in S, we add a polygon
Pi to P . First, we compute the complement of Si within B. If B\Si is
connected, Pi simply is this connected component, see Figure 2(a). If B\Si

4



is disconnected, we construct the simple polygon Pi by connecting the
two components by a ‘handle’ outside of B, as illustrated in Figure 2(b).
Finally, we add Pn+1 = B to P . Clearly, the sum of the number of vertices
of the polygons in P is linear in n. We take P as the input to our problem
Empty-Polygon-Intersection.

• Now it is easy to verify that the rectangle B is covered by the strips in S,
that is, B ⊆ ⋃n

i=1
Si, if and only the polygons in the set P have an empty

intersection, that is,
⋂

Pi∈P Pi = ∅.
The reduction trivially takes O(n) time, and thus we conclude that Smallest-

Intersecting-Circle is 3sum-hard.

References

[1] F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, pages 201–290.
Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

[2] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and count-
ing geometric intersections. IEEE Trans. Comput., C-28(9):643–647, Sept.
1979.

[3] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-

tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin,
Germany, 2nd edition, 2000.

[4] G. N. Frederickson and D. B. Johnson. The complexity of selection and
ranking in X + Y and matrices with sorted rows and columns. J. Comput.

Syst. Sci., 24:197–208, 1982.

[5] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in com-
putational geometry. Comput. Geom. Theory Appl., 5:165–185, 1995.

[6] H. Imai and T. Asano. Finding the connected components and a maximum
clique of an intersection graph of rectangles in the plane. J. Algorithms,
4:310–323, 1983.

[7] S. Jadhav, A. Mukhopadhyay, and B. K. Bhattacharya. An optimal algo-
rithm for the intersection radius of a set of convex polygons. J. Algorithms,
20:244–267, 1996.

[8] N. Megiddo. Applying parallel computation algorithms in the design of
serial algorithms. J. ACM, 30(4):852–865, 1983.

[9] K. Mehlhorn, S. Meiser, and R. Rasch. Furthest site abstract Voronoi
diagrams. Int. J. Comput. Geom. & Appl., 11:583–616, 2001.

[10] M. van Kreveld and T. Schlechter. Automated label placement for groups
of islands. The 22nd International Cartographic Conference, A Coruña,
Spain, 2005.

[11] C. K. Yap. An O(n log n) algorithm for the Voronoi diagram of a set of
simple curve segments. Discrete Comput. Geom., 2:365–393, 1987.

5


