Let $D_{\text {opt }}$ be an optimal disc of radius $r_{\text {opt }}$ centered at $m_{\text {opt }}$. Let P be a polygon in \mathcal{P}. Let e be an edge of P intersected by $D_{\text {opt }}$ and l be the line supporting e. We assume w.l.o.g. that l is the x-axis. For $\delta>0$ we define the following family of lines $\mathcal{L}_{\delta}=\left\{l_{\delta}^{i} \mid i \in \mathbb{Z}\right\}$ where $l_{\delta}^{i}=\{(x, i \delta) \in$ $\left.\mathbb{R}^{2} \mid x \in \mathbb{R}\right\}$.
Assume $m_{\text {opt }}$ lies between l_{δ}^{i-1} and l_{δ}^{i}. Since $d\left(m_{\text {opt }}, l\right) \leqslant r_{\text {opt }}$ it follows that $|i| \leqslant\left\lceil r_{\text {opt }} / \delta\right\rceil$. Let m be the vertical projection of m_{opt} onto l_{δ}^{i}. The disc D of radius $r=r_{\mathrm{opt}}+\delta$ around m contains the disc $D_{\text {opt }}$ and therefore touches all polygons in \mathcal{P}. Thus for any $B \geqslant r_{\text {opt }}$ there is a disc D of radius $r=r_{\text {opt }}+\delta$ touching all polygons in \mathcal{P} that is centered at a point m that lies on one of the $O(B / \delta)$ many lines in $\mathcal{L}_{\delta}^{B}=\left\{l_{\delta}^{i}|i \in \mathbb{Z},|i| \leqslant\lceil B / \delta\rceil\}\right.$.
Suppose we know a value $r_{\text {app }}$ with $r_{\mathrm{opt}} \leqslant r_{\text {app }} \leqslant 2 r_{\mathrm{opt}}$. Fix an arbitrary $\varepsilon \geqslant 0$. We set $B=r_{\text {app }}$ and $\delta=\varepsilon r_{\text {app }} / 2$. Then the best solution on the $O(1 / \varepsilon)$ lines in $\mathcal{L}_{\varepsilon r_{\text {app }} / 2}^{r_{\text {app }}}$ has a radius of at most $(1+\varepsilon) r_{\mathrm{opt}}$. It can be computed in $O((n / \varepsilon) \operatorname{polylog}(n))$ time.
In general, we do not know e of course. There are two ways to proceed:
First observe, that P can be an arbitrary polygon in \mathcal{P}. Thus, we can choose P to be the polygon with the smallest number of vertices, and try all the edges of P as candidates for e. There are $O(n / m)$ such candidate edges and the overall runtime for computing a $(1+\varepsilon)$-approximation to r_{opt} with this approach is therefore $O\left(n^{2} /(\varepsilon m)\right.$ polylog $\left.(n)\right)$.
In a second approach we randomly choose an edge e from the n edges of the polygons in \mathcal{P} and proceed as above to compute a solution that lies on a line parallel to e in $O((n / \varepsilon) \operatorname{polylog}(n))$ time. We call e good if it is intersected by $D_{\text {opt }}$. If e is a good edge, we get a $(1+\varepsilon)$-approximation to $r_{\text {opt }}$ (otherwise we do not know what we get). Since each polygon has at least one good edge, the probability that e is good is at least $1 / m$. If we repeat this experiment $O(m)$ times, we find a good edge with high probability. The overall runtime for computing (with high probability) a $(1+\varepsilon)$-approximation to $r_{\text {opt }}$ with this approach is $O((m n / \varepsilon) \operatorname{poly} \log (n))$. Thus (given $r_{\text {app }}$) we can compute (w.h.p.) a $(1+\varepsilon)$-approximation to $D_{\text {opt }}$ in $O\left((1 / \varepsilon) \min \left(m n, n^{2} /\right.\right.$ $m)$ polylog(n)) time.

It remains to explain how we get a 2-approximation $r_{\text {app }}$ to r_{opt}.
Let D_{opt} be an optimal disc of radius r_{opt} centered at m_{opt}. Let P be a polygon in \mathcal{P}. Let e be an edge of P intersected by $D_{\text {opt }}$ and l be the line supporting e. Let m be the vertical projection of $m_{\text {opt }}$ onto l. The disc D of radius $r=r_{\mathrm{opt}}+d\left(m_{\mathrm{opt}}, l\right)$ around m contains the disc D_{opt} and therefore touches all polygons in \mathcal{P}. Since $d\left(m_{\mathrm{opt}}, l\right) \leqslant r_{\mathrm{opt}}$ this is a 2-approximation. Since we do not know e we have to proceed as above to find it (w.h.p.). Thus we can compute (w.h.p.) a 2-approximation to D_{opt} in $O\left(\min \left(m n, n^{2} / m\right)\right.$ polylog $\left.(n)\right)$ time.

