Let D_{opt} be an optimal disc of radius r_{opt} centered at m_{opt} . Let P be a polygon in \mathcal{P} . Let e be an edge of P intersected by D_{opt} and l be the line supporting e. We assume w.l.o.g. that l is the x-axis. For $\delta > 0$ we define the following family of lines $\mathcal{L}_{\delta} = \{l_{\delta}^{i} | i \in \mathbb{Z}\}$ where $l_{\delta}^{i} = \{(x, i\delta) \in \mathbb{R}^{2} | x \in \mathbb{R}\}$.

Assume m_{opt} lies between l_{δ}^{i-1} and l_{δ}^{i} . Since $d(m_{\text{opt}}, l) \leq r_{\text{opt}}$ it follows that $|i| \leq \lceil r_{\text{opt}}/\delta \rceil$. Let m be the vertical projection of m_{opt} onto l_{δ}^{i} . The disc D of radius $r = r_{\text{opt}} + \delta$ around m contains the disc D_{opt} and therefore touches all polygons in \mathcal{P} . Thus for any $B \geq r_{\text{opt}}$ there is a disc D of radius $r = r_{\text{opt}} + \delta$ touching all polygons in \mathcal{P} that is centered at a point m that lies on one of the $O(B/\delta)$ many lines in $\mathcal{L}_{\delta}^{B} = \{l_{\delta}^{i} | i \in \mathbb{Z}, |i| \leq \lceil B/\delta \rceil\}$.

Suppose we know a value $r_{\rm app}$ with $r_{\rm opt} \leq r_{\rm app} \leq 2r_{\rm opt}$. Fix an arbitrary $\varepsilon \geq 0$. We set $B = r_{\rm app}$ and $\delta = \varepsilon r_{\rm app}/2$. Then the best solution on the $O(1/\varepsilon)$ lines in $\mathcal{L}_{\varepsilon r_{\rm app}/2}^{r_{\rm app}}$ has a radius of at most $(1+\varepsilon)r_{\rm opt}$. It can be computed in $O((n/\varepsilon)\operatorname{polylog}(n))$ time.

In general, we do not know e of course. There are two ways to proceed:

First observe, that P can be an arbitrary polygon in \mathcal{P} . Thus, we can choose P to be the polygon with the smallest number of vertices, and try all the edges of P as candidates for e. There are O(n/m) such candidate edges and the overall runtime for computing a $(1 + \varepsilon)$ -approximation to r_{opt} with this approach is therefore $O(n^2/(\varepsilon m) \operatorname{polylog}(n))$.

In a second approach we randomly choose an edge e from the n edges of the polygons in \mathcal{P} and proceed as above to compute a solution that lies on a line parallel to e in $O((n/\varepsilon)\operatorname{polylog}(n))$ time. We call e good if it is intersected by D_{opt} . If e is a good edge, we get a $(1 + \varepsilon)$ -approximation to r_{opt} (otherwise we do not know what we get). Since each polygon has at least one good edge, the probability that e is good is at least 1/m. If we repeat this experiment O(m) times, we find a good edge with high probability. The overall runtime for computing (with high probability) a $(1 + \varepsilon)$ -approximation to r_{opt} with this approach is $O((mn/\varepsilon)\operatorname{polylog}(n))$. Thus (given r_{app}) we can compute (w.h.p.) a $(1 + \varepsilon)$ -approximation to D_{opt} in $O((1/\varepsilon)\min (mn, n^2/m)\operatorname{polylog}(n))$ time.

It remains to explain how we get a 2-approximation $r_{\rm app}$ to $r_{\rm opt}$.

Let D_{opt} be an optimal disc of radius r_{opt} centered at m_{opt} . Let P be a polygon in \mathcal{P} . Let e be an edge of P intersected by D_{opt} and l be the line supporting e. Let m be the vertical projection of m_{opt} onto l. The disc D of radius $r = r_{opt} + d(m_{opt}, l)$ around m contains the disc D_{opt} and therefore touches all polygons in \mathcal{P} . Since $d(m_{opt}, l) \leq r_{opt}$ this is a 2-approximation. Since we do not know e we have to proceed as above to find it (w.h.p.). Thus we can compute (w.h.p.) a 2-approximation to D_{opt} in $O(\min(mn, n^2/m) \operatorname{polylog}(n))$ time.