
Constructing Optimal Axis-Parallel Highways

Heekap Ahn Tetsuo Asano Sang Won Bae
Otfried Cheong Chan-Su Shin Alexander Wolff

September 12, 2005

Abstract

In this paper we consider the problem of constructing optimal highways.
For two points p and q in the plane, a line h—the highway—and a real v > 1,
we define the travel time (also known as the City distance) from p and q to
be the time needed to traverse a quickest path from p to q, where distances
are measured in the Manhattan (i.e. the L1-) metric, and the speed on h is v
and elsewhere 1. Given a set S of n points in the plane and a highway speed
v, we show how to find an axis-parallel line that minimizes the maximum
travel time over all pairs of vertices. Our algorithms takes O(n log n) time.

We also show that placing k parallel highways does not reduce the maxi-
mum travel time.

1 Introduction

2 Our model

We give an algorithm that computes an optimal vertical highway. Clearly the same
algorithm can also be used to find an optimal horizontal highway. We decided to
describe the vertical case since it allows us to embed the points and their travel-time
graphs (defined below) into the same plane.

For two points p and q in the plane and a vertical highway hx at x-coordinate
x with speed v > 1, we define the highway distance hwx(p, q) of p(xp, yp) and
q(xq, yq) to be the time needed to traverse a quickest path from p via hx to q. Note
that

hwx(p, q) = |xp − x|+ |yp − yq|/v + |x− xq|.
Then the travel time tpq(x) from p to q in the presence of highway hx is the
minimum of the L1-distance and the highway distance of p and q. Given a set S
of n points in the plane, our goal is to find a vertical highway that minimizes the
maximum travel time over all pairs of points in S. Note that the graph of the
function tpq that maps the x-coordinate of a vertical highway hx to the travel time
from p to q has a very simple structure. If we let v′ = (v− 1)/(2v), ∆y = |yq − yp|,
and assume xp ≤ xq then

lpq = xp −∆y · v′ and rpq = xq + ∆y · v′

are the two x-coordinates where L1(p, q) = hwx(p, q). The travel-time graph Γpq

of tpq (see Figure 1) consists of three horizontal segments

s1
pq = (−∞, lpq]× L1(p, q), s3

pq = [xp, xq]× hwx(p, q), s5
pq = [rpq,∞)× L1(p, q)

1

and two line segments s2
pq and s4

pq that connect the segment s1
pq to s3

pq and the seg-
ment s3

pq to s5
pq, respectively. The slopes 2 and −2 of the non-horizontal segments

s2
pq and s4

pq, respectively, do not depend on the highway speed v. We refer to s3
pq

as the valley floor and to the two other horizontal segments 1
pq and s5

pq as plateaus
of the travel-time graph Γpq or simply of {p, q}.

p

q

5

7

6

x

tpq

s1
pq

s2
pq

s3
pq

s4
pq

s5
pq

lpq rpqxp xq

Figure 1: The travel time tpq as a function of the x-coordinate of the highway.

Now consider the travel-time graphs Γpq of all pairs {p, q} ⊆ S. Their upper
envelope E maps x to the maximum travel time over all pairs {p, q}. Thus a global
minimum of E corresponds to a highway position that minimizes the maximum
travel time. Let x∗ be the leftmost such highway position. It is clear that x∗ is
bounded if not all points lie on the same horizontal line. Let h∗ be the highway
with x-coordinate x∗ and let t∗ = max{p,q}⊆S tpq(x∗) be the maximum travel time
given h∗. Our goal is to compute x∗ and t∗ efficiently.

It is easy to determine (x∗, t∗) in O(n2 log n) time as follows. Clearly two travel-
time graphs cross each other only a constant number of times. For each crossing
consider the leftmost intersection point. There are O(n2) such intersection points
in total. A plane sweep that stops at each of these intersection points and maintains
E in O(log n) time per intersection yields (x∗, t∗) within the desired time bound.
In the next section we characterize the optimal highway position. Based on this
characterization we then give an algorithm that determines (x∗, t∗) in O(n log n)
time.

In the remainder of the paper we assume that S conatins at least three points
and that not all points have the same y-coordinate.

3 Characterization of the optimum

Lemma 1 The upper envelope E is concave.

Proof. All travel-time graphs are concave, thus their point-wise maximum is con-
cave, too.

2

Recall that x∗ is the leftmost highway position that minimizes the maximum
travel time over all pairs of points in S. In the sequel we will abbreviate tpq(x∗)
by t∗pq.

Lemma 2 There are two pairs {a, b} and {c, d} in S with xa ≤ x∗ ≤ xb and x∗ ≤
xc ≤ xd whose highway distances given h∗ equal t∗, i.e. hwx∗(a, b) = hwx∗(c, d) =
t∗. In particular, (x∗, t∗) = s2

cd ∩ s3
ab.

Proof. Since we are looking for a leftmost minimum (x∗, t∗), it must lie on the
intersection of two travel-time graphs, and one of the line segments participating
in the intersection must be of type s2. This is due to the fact that segments of
type s2 are the only pieces of travel-time graphs that go down. Let {c, d} be the
pair with (x∗, y∗) ∈ s2

cd. This immediately yields that x∗ ≤ xc ≤ xd. We have
three cases. In case (A) the other segment that participates in the intersection is
of type s4

pq and in case (B) the other segment is a plateau of some graph Γpq. In
both cases we show that we are actually also in case (C), i.e. there is a pair {a, b}
of points in S whose valley floor contains the minimum. This yields xa ≤ x∗ ≤ xb.
We first consider case (A).

In case (A), the optimal highway h∗ separates the pairs {p, q} and {c, d}, and
the highway distances of both pairs are equal to the maximum travel time t∗. Let
Πpq and Πab be the two shortest paths that connect p to q and c to d via the
highway h∗, respectively. Let I = Πpq ∩ Πcd. We first consider the subcase I 6= ∅,
see Figure 2.

For r ∈ {p, q, c, d} let `r be the travel time from r to the closest point of I.
Without loss of generality we assume yq < yp and yd < yc. Suppose `d > `q. This
would mean that t∗pd > t∗pq, which in turn would contradict the maximality of t∗pq.
By a symmetric argument we can rule out `d < `q. Thus `d = `q, which means
that t∗pd = t∗pq and that t∗ lies in the valley floor of {p, d}.

q

p

h∗

}
I

`d`q

c

d

Figure 2: A tie with Πpq ∩Πcd 6= ∅.

q

p

h∗

I ′

{
`′d

`′q

c

d

`′p

`′c

Figure 3: A tie with Πpq ∩Πcd = ∅.

Now we consider the subcase I = ∅, see Figure 3. Note that in this subcase
h∗ \ (Πpq ∪ Πcd) has three connected components. Let I ′ be the middle, i.e. the
bounded component, including the two boundary points. For r ∈ {p, q, c, d} let `′r
be the travel time from r to the point of I ′ that is closest to r. Note that

t∗pq = `′p + `′q = `′c + `′d = t∗cd = t∗.

Due to the maximality of t∗pq we have t∗pq ≥ t∗pc, t∗pd, t∗qc, t∗qd. Summing up these
four inequalities yields

`′p + `′q = `′c + `′d + 2|I ′|/v,

3

where |I ′| is the length of the line segment I ′. Now it is clear that I ′ has length 0
and that we can proceed as in the subcase I 6= ∅.

In case (B) the travel time from p to q is determined by the L1-distance of p
and q, i.e. t∗pq = L1(p, q) ≤ hwx∗(p, q). Given that c and d lie to the right of h∗,
p and q must lie to the left of h∗, otherwise we could move the highway to the
right and thus closer to both pairs. This would decrease the travel time from c to
d without increasing the travel time from p to q, contradicting the minimality of
t∗. If h∗ separates the two pairs, then we must have t∗pq = hwx∗(p, q) otherwise
we could again move the highway to the right, contradicting the minimality of t∗.
Thus we are actually in case (A), where the travel time of both pairs is determined
by their highway distance.

It should be possible to simplify the above case analysis. Any sug-
gestions?

4 Algorithm

Due to Lemma 2 we know that the minimum of E lies on the intersection of a
segment of type s2 and a segment of type s3, i.e. there are pairs {a, b} and {c, d}
in S such that (x∗, t∗) = s2

cd ∩ s3
ab. The first task is

(A) go through all (combinatorially different) highway positions. For each such
highway position x we find a pair {αx, βx} in S of maximum highway distance
among all pairs in S that are separated by a highway at x.

Note that {a, b} = arg minx hwx(αx, βx), the pair that has minimum highway dis-
tance among all pairs of type {αx, βx}, is the first of the two point pairs we are
looking for. State reason!

We do a binary search on the list L = {lpq | p 6= q ∈ S, xp ≤ xq}. For each
step in the search we call a decision algorithm. The second task is

(B) find a pair {γ, δ} in S that is not separated by the current highway and whose
travel-time distance is larger than the highway distance of a and b if such a
pair exists.

If a pair {γ, δ} exists, then the highway must be moved into the direction of γ and
δ, since this is the only way to decrease their travel-time distance. If no pair exists
whose travel-time distance is larger than hwx(a, b), then by Lemma 2 there must be
a pair {c, d} on the right side of the current highway with hwx(c, d) = hwx(a, b). In
this case the current highway position is optimal. This is how we can decide whether
we have found the optimal highway position or whether we have to continue our
search in the upper or in the lower part of the list.

4.1 Binary search

In order to avoid sorting the list L, which has Θ(n2) elements, we use the fact that
each value `pq can be written as the sum of two terms such that one term depends
only on p and the other only on q:

`pq =

{
(xp + ypv

′)− ypv
′ if yq ≥ yp

(xp − ypv
′) + ypv

′ else.

4

Recall that we required xp ≤ xq for all lpq ∈ L. After sorting the lists L1 =
{xp ± ypv

′ | p ∈ S} and L2 = {±yqv
′ | q ∈ S} we can determine the k-th largest

value in the list L1×2 = {v1 +v2 | v1 ∈ L1, v2 ∈ L2} in O(n) time using the method
of REF?. Note that L (L1×2. Only a fraction of roughly 1/4 of the elements in
L1×2 is contained in L, but this does not matter neither for the correctness of our
method nor for its asymptotic running time.

Due to our decision algorithm it seems we do not need the concavity of E .

4.2 Decision algorithm

In this section we show the following:

Theorem 1 After an O(n log n)-time preprocessing we can answer queries of the
following type in linear time: given x ∈ R, decide whether x < x∗, x = x∗, or
x > x∗ (i.e. the sign of x− x∗).

We do this by solving the two tasks (A) and (B) mentioned in the beginning of
this section. We first tackle task (A) and observe the following.

Observation 1 No point pair separated by a vertical highway hx changes its high-
way distance while hx is moved to the right without hitting an input point.

Consider a point pair {α, β} that has maximum highway distance among all
pairs in S that are separated by a highway at a given x-coordinate x. We give
an algorithm that efficiently determines such pairs for all x-coordinates of input
points. For the description of our algorithm we need the following notation. Let
Lll and Lul be the sets of straight lines of slopes v and −v, respectively, that go
through input points p with xp ≤ x, see Figure 4. For input points q with xq ≥ x,
define Lur and Llr analogously. Let gll and glr be the bottommost lines in Lul

and Lur, respectively. Analogously, let gul and gur be the topmost lines in Lll and
Llr, respectively. Clearly, these lines and sets of lines depend on the position x of
the highway, but instead of indexing all these variables additionally by x, we will
always make sure that it is clear to which highway the variables refer. Let h−x (h+

x)
be the closed halfplane bounded to the right (left) by hx.

We now characterize point pairs that have maximum highway distance among
those pairs separated by the highway.

Lemma 3 Let {α, β} with xα ≤ xβ be a pair of maximum highway distance among
the pairs that are separated by hx. Then α ∈ gul and β ∈ glr, or α ∈ gll and β ∈ gur.

Proof. Let {α, β} be as required. Our proof is by contradiction. We assume that
one of the two points lies on neither of the two lines, say α lies neither on gul nor on
gll, see Figure 5. Let π be the shortest a–b path in the highway metric and let β′ be
the point on hx closest to β. Note that β′ and β have the same y-coordinate and
that all highway paths from β to points in h−x go through β′. Consider the set Wδ

of points in h−x that have the same distance δ > 0 from β′ in the highway metric.
Note that this so-called wavefront Wρ forms a triangle of width ρ and height 2ρv.
The triangle is bounded by hx, one line segment of slope v and one of slope −v.
A wavefront Wρ′ with ρ′ > ρ is a scaled copy of Wρ with scaling factor ρ′/ρ and
scaling center β′. When the wavefront hits α, the closure of the wavefront contains
all points in h−x whose distance from β is bounded by hwx(α, β′). However, due to

5

hx β

α

Lur

Llr

Lul

Lll

gur

glr

gll

gul

Figure 4: Extremal pairs for v = 2.

hx

α

gll

gul

ββ′

Wρ

π

h−x

Figure 5: Wavefront Wρ touches α before gul.

our assumption, at least one of the lines gul or gll has not yet been touched by the
wavefront. Thus any point that defines the untouched line is farther from β′ than
α, and hence farther from β, too. This contradicts the definition of α.

Next we show how to determine a pair of maximum highway distance given
points that fulfill the characterization of Lemma 3. Let S−x = S ∩ h−x and analo-
gously S+

x = S ∩ h+
x .

Lemma 4 Given two points in S−x , one on gul and one on gll, as well as two
points in S+

x , one on gur and one on glr, we can determine in constant time a pair
in S that has maximum highway distance among all pairs separated by hx.

Proof. Let y− be the y-coordinate of the intersection point of gul and gll. Define
y+ accordingly using gur and glr. If y− > y+ (as in Figure 4), then all pairs that
consist of a point on gul and a point on glr have the same highway distance. This
can be seen by observing that every shortest path connecting such a pair (q, r)
consists of a piece from q to the point p−(x, y−) ∈ hx, a piece exclusively on hx,
and a piece from p+(x, y+) ∈ hx to r. Note that the first and the third piece
are disjoint. Due to the slopes of gul and glr, all points in gul ∩ h−x have the same
highway distance from p− and all points in glr∩h+

x have the same highway distance
ρ from p+.

On the other hand all pairs that consist of a point on gll and a point on gur

have highway distance strictly less than ρ. This is due to the fact that—other than
above—a shortest path from a point in gll ∩ h− to p− and a shortest path from a
point in gur ∩ h+ to p+ overlap.

Clearly the case y− < y+ is symmetric. If y− = y+, each point pair in
gul∩h−x ×glr∩h+

x has the same highway distance as a point pair in gll∩h−x ×gur∩h+
x ,

since all points in these sets have the same highway distance to the point p+, which
in this case coincides with the point p−.

6

We solve task (A) as follows. We sort the points according to ascending x-
coordinate. We first scan the resulting array X in the given order and determine
for each coordinate x ∈ X the topmost line gll with slope v and the bottommost
line gul with slope −v among the lines through points q with xq ≤ x. Now we scan
X in reverse order and determine for each x ∈ X the topmost line glr with slope
−v and the bottommost line gur with slope v among the lines through points q
with xq ≥ xp. With each of the lines we store a point that defined the line.

Then we scan X a third time and for each value x ∈ X we consider the points on
{gul, glr} and on {gll, gur}. Among them by Lemma 4 we can find in constant time
the desired point pair {αx, βx} of maximum highway distance (given a highway at
x). After sorting the three scans can be done in O(n) time.

Now, by Lemma 2 we know that t∗ is determined by the highway distance of
a point pair {a, b} separated by h∗. Clearly {a, b} must be a pair whose highway
distance is maximum among the pairs separated by h∗. Due to Observation 1 we
can restrict our search for such pairs to highways that go through input points.
Thus we already know the value of t∗, namely

t∗ = min
x∈X

hwx(αx, βx), (1)

but we still do not know the exact position x∗ of the optimal highway. Let x′ ∈ X
be the value that minimizes the expression in Equation (1). Note that the point
pair {a, b} in Lemma 2 is the pair {αx′ , βx′}. We also know the rough position of
the optimal highway, i.e. we know that x′ ≤ x∗ ≤ x′′, where x′′ is the successor of
x′ in X.

It remains to find the pair {c, d} with (x∗, t∗) = s2
cd ∩ s3

ab. Note that this
intersection point is rightmost among all intersection points of type s2

pq∩s3
ab, where

{p, q} is any pair in S. (Can we use this fact? Seems unlikely since segments of
type s2

pq that do not intersect s3
ab do not give us any information about where to

continue the binary search.) Heekap’s example shows that there may be a (linear?)
number of pairs {p, q} with s2

pq ∩ s3
ab 6= ∅.

Recall that task (B) is the following: given a highway position x (with x′ ≤ x ≤
x′′ as we know now), find a pair {γ, δ} in S that is not separated by the current
highway and whose travel-time distance is larger than hwx(a, b)—if such a pair
exists. Consider the set R+

p (x) of points in h+
x of distance at most ` = hwx(a, b)

from a point p ∈ h+
x . If xp − x ≥ `, then R+

p (x) is simply the L1-circle Cp of
radius ` centered at p, see Figure 6(a). If 0 ≤ xp − x < `, then R+

p (x) is the
union of a triangle Tp(x) and the set Cp ∩ h+

x , see Figures 6(b) and (c). Let
∆xp = ` − (xp − x). Then the triangle Tp(x) connects the points (x + ∆xp, yp),
(x, yp + v∆xp), and (x, yp− v∆xp). Let R−

p (x) be defined symmetrically for points
p ∈ h−. Now task (B) is equivalent to checking whether there are two points
{γ, δ} ⊆ S+

x such that γ 6∈ R+
δ (x) or whether there are two points {γ, δ} ⊆ S−x

such that γ 6∈ R−
δ (x). We give an algorithm for checking the first condition (B+),

the second condition (B−) is symmetric.
Recall that the subset S+

x of S in h+
x is the same for any highway position

x ∈ [x′, x′′]. We also know that there is a highway position x∗ ∈ [x′, x′′] (namely the
optimal one) such that S+

x ⊂ R+
p (x∗) for each p ∈ S+

x . The inclusion S+
x ⊂ R+

p (x)
actually holds for any x ≥ x∗ since the regions of type R+

p (x) are monotonous in
the sense that R+

p (x1) ∩ h+
x2
⊂ R+

p (x2) for x1 < x2. For each point p ∈ S+
x let fp

be a point in S+
x such that if fp ∈ R+

p (x) then S+
x ⊂ R+

p (x). Note that either fp

is an arbitrary point in the L1-circle Cp (if S+
x ⊂ Cp) or fp is the last point hit

7

p
`

h1

Cp

R+
p (x1)

(a)

p

h2h2

R+
p (x2)

Tp(x2)

(b)

∆xp

2∆xp

p

h3

R+
p (x3)

Tp(x3)

(c)

p

h2h1 h2 h3

Kup
p

K lo
p

Bp

(d)

Figure 6: Examples of different regions of type R+
p for highway speed v = 2.

by the boundary ∂R+
p (x) of R+

p (x) while x increases. Let gp be the horizontal line
through p directed in positive x-direction. For points q, r ∈ h+ ∩ g−p we say that
r is later w.r.t. p than q if the line with slope −v through r intersects gp to the
right of the line with the same slope through q. We extend this definition to points
below p using lines of slope v, see Figure 7.

Now it is clear that condition (B+) is equivalent to fp ∈ R+
p (x) for all p ∈ S+

x .
If we knew all points of type fp, then condition (B+) could be checked in linear
time. Note that the points fp are independent of the exact position of the highway
between x′ and x′′. In the remainder of this section we detail how to precompute
the points fp in O(n log n) time. This will complete the proof of Theorem 1.

First note that the set
⋃

x∈[x′,x′′] R
+
p (x) is contained in the rombus Bp of width

2` and height 2v` that is obtained by scaling Cp vertically by a factor of v. If
Bp \Cp is empty, then fp is an arbitrary point in S+

x , e.g. fp = p. Otherwise fp lies
in a kite-shaped region above or below Cp. In Figure 6(d) the upper component
Kup

p of Bp \Cp is shaded. We now show how to find the latest point f(Kup
p) in that

region (if any); the latest point f(K lo
p) in the lower component K lo

p of Bp \Cp can
be obtained in the same way. If both points exist, fp is the later of them. Figure 8
shows how the kite Kup

p can be covered by two triangles ∆ul
p and ∆ur

p both whose
upper right edges have slope −v. Note that this is the same slope as that of the top
right edge of the triangle Tp(x) that moves right with increasing x. Accordingly we
split the task of computing f(Kup

p) into that of computing the latest point f(∆ul
p)

of ∆ul
p and that of computing the latest point f(∆ur

p) of ∆ur
p . If f(∆ur

p) is defined,
i.e. if ∆ur

p ∩ S+
x 6= ∅, then f(Kup

p) = f(∆ur
p), otherwise f(Kup

p) = f(∆ul
p). Again

we only detail how to determine f(∆ur
p), computing f(∆ul

p) is analogous.
Observe that the sets ∆ur

p with p ∈ S+
x are translates of each other. In each

set ∆ur
p with ∆ur

p ∩ S+
x 6= ∅ we want to find the latest point f(∆ur

p) ∈ ∆ur
p ∩ S+

x .
Note that this is the point in ∆ur

p ∩S+
x closest to the upper right edge of ∆ur

p . The
following lemma shows that we can find all points of type f(∆ur

p) in O(n log n)
time as desired.

8

p

q
r

u
hx

gp

Figure 7: Point r is
later than q and u.

p

Kup
p

∆ul
p

∆ur
p

∆ul
p ∆ur

p

f(∆ur
p)

f(∆ul
p)

Figure 8: Splitting the task of determining f(Kup
p) into two

easier tasks.

Lemma 5 Given a set P of n points, a set T of m triangles that are translates
of each other, and for each triangle T ∈ T an edge eT of T , we can compute in
O((n+m) log m) time for each non-empty T ∈ T a point fT ∈ P ∩T that is closest
to eT .

Proof. First note that it is enough to give an algorithm for the case that all
edges eT are translates of each other. If not, we simply run the algorithm for the
restricted case three times, once for each class of edges. In our algorithm we sweep
the plane with a line that is parallel to all edges of type eT . The sweeping direction
is such that for each t ∈ T the seep line hits eT before vT , the vertex of T opposite
of eT , see Figure 9. This ensures that in each non-empty triangle T the point fT

is hit by the sweep line first. We say that vT is the reference point of T .
Before the sweep we set up a range-searching data structure R for the set

VT = {vT | T ∈ T } of reference points. Our ranges are translates of a triangle that
is point-symmetric to the triangles in T . After constructing R in O(m log m) time,
queries can be answered in this setting in O(k+log m) time [CE87, AE99], where k
is the number of points that are reported. Since the range-reporting data structure
is based on point location (this works, but what do the references actually say?),
it is no problem to delete points in O(log m) time.

The sweep line stops whenever it hits a point p in P . Then we query R with the
triangle τ(p) that is obtained by the concatenation of two congruence mappings:
translate any T ∈ T by the vector p − vT and then rotate the result around p by
180◦ degrees, see Figure 9. This query yields all points vT with p ∈ T that have
not been removed before. After reporting these points, we remove them from R.

The correctness of the algorithm relies on two facts. First, fT is the first point
in P ∩ T hit by the sweep line. Second, τ(p) is exactly the set of all points in the
plane that are reference points of triangles containing p, see Figure 9.

The running time is easy to see.

5 Extensions

• What about placing the optimal combination of a vertical and a horizontal
highway?

• What about the Euclidian case?

9

τ(p)

T

eT

vT

p

fT

sweep
line

Figure 9: The point p is contained in all triangles T with reference point vT ∈ τ(p).

References

[AE99] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its
relatives. In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances
in Discrete and Computational Geometry, volume 223 of Contemporary
Mathematics, pages 1–56. American Mathematical Society, Providence, RI,
1999.

[CE87] Bernard Chazelle and H. Edelsbrunner. Linear space data structures for
two types of range search. Discrete Comput. Geom., 2:113–126, 1987.

10

