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Abstract

For two points p and q in the plane, a line h—the highway—and a real
v > 1, we define the travel time (also known as the City distance) from p
and q to be the time needed to traverse a quickest path from p to q, where
distances are measured in the underlying metric, and the speed on h is v and
elsewhere 1. Given a set S of n points in the plane and a highway speed
v, we consider the problem of finding an axis-parallel line that minimizes
the maximum travel time over all pairs of points in S. In the case of the
L1-metric, we achieve a linear time algorithm. In the case of the Euclidean
metric, our algorithms run in time O(n log n). We also show that placing k
parallel highways does not reduce the maximum travel time.

1 Introduction

We give an algorithm that computes an optimal vertical highway. Clearly the same
algorithm can also be used to find an optimal horizontal highway. We decided to
describe the vertical case since it allows us to embed the points and their travel-time
graphs (defined below) into the same plane.

Let d(p, q) be the distance between p and q in the underlying metric. Through-
out the paper we assume that S contains at least three points and that not all
points have the same y-coordinate.

2 The Optimal vertical highway under the L1 met-
ric

For two points p = (px, py) and q = (qx, qy) in the plane and a vertical highway
h(x) at x-coordinate x with speed v > 1, we define the highway distance hwx(p, q)
of p and q to be the time needed to traverse a quickest path from p via h(x) to q.
Note that

hwx(p, q) = |px − x|+ |qx − x|+ |py − qy|/v.

Then the travel time tpq(x) from p to q in the presence of highway h(x) is the
minimum of the L1-distance d(p, q) and the highway distance hwx(p, q). Note that
the graph of the function tpq(x) that maps the x-coordinate of a vertical highway
h(x) to the travel time from p to q is a piecewise linear and continuous function
consisting of at most 5 segments: let v′ = (v−1)/(2v), ∆y = |qy −py|, and assume
px ≤ qx, then

`pq = px −∆y · v′ and rpq = qx + ∆y · v′
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Figure 1: The travel time tpq as a function of the x-coordinate of a highway with
speed v = 2 such that tpq(x) = min{d(p, q),hwx(p, q)}. The graph of d(p, q) is
dashed, and the graph of hwx(p, q) is dash dotted.

are the two x-coordinates where d(p, q) = hwx(p, q). The travel-time graph of tpq

(see Figure 1) consists of three horizontal segments

s1
pq = (−∞ : `pq]×{d(p, q)}, s3

pq = [px : qx]×{hwx(p, q)}, s5
pq = [rpq : ∞)×{d(p, q)}

and two line segments s2
pq and s4

pq that connect the segment s1
pq to s3

pq and the seg-
ment s3

pq to s5
pq, respectively. The slopes 2 and −2 of the non-horizontal segments

s2
pq and s4

pq, respectively, do not depend on the highway speed v. We refer to s3
pq

as the valley floor and to the two other horizontal segments s1
pq and s5

pq as plateaus
of the graph of tpq or simply of {p, q}.

Our main problem in this paper is: given a set S of n points in the plane, our
goal is to find a vertical highway that minimizes the maximum travel time over all
pairs of points in S. The distance function ω(x) : R → R of S is defined as

ω(x) := max
{p,q}⊆S

tpq(x).

Our problem is thus to find a placement x ∈ R that minimizes ω(x). We call such
a placement a goal placement.

We first look at the graphs of tpq of all pairs {p, q} ⊆ S. Their upper envelope
of the graphs is represented by the function ω(x) that maps x to the maximum
travel time over all pairs {p, q}, see Figure 2. Thus a global minimum of the upper
envelope corresponds to a highway position that minimizes the maximum travel
time.

A nonnegative function f is called unimodal if for any c > 0 the set {x | E(x) >
c} is an interval. In other words, there exists a ∈ R such that f is increasing on
(−∞ : a] and decreasing on [a : ∞). Our algorithm is based on the unimodality of
the monovariate distance function.

Lemma 1 The function −ω(x) is unimodal.
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Figure 2: Time travel graphs of 6 points. The complexity of the upper envelope
can be quadratic by adding dn−6

2 e points along the segment p3p4 and bn−6
2 c points

along the segment p5p6.

Proof. All functions −tpq(x) are unimodal, thus their point-wise minimum, −ω(x),
is unimodal, too. This is due to the fact that the set {x | ω(x) ≤ c} is the inter-
section of the sets {x | tpq(x) ≤ c} over all pairs {p, q}, and the intersection of
intervals is an interval.

Let x∗ be the leftmost global minimum. It is clear that x∗ is bounded if not all
points lie on the same horizontal line. Let h∗ be the highway with x-coordinate x∗

and let t∗ = max{p,q}⊆S tpq(x∗) be the maximum travel time given h∗. Our goal is
to compute x∗ and t∗ efficiently.

The complexity of the upper envelope can be superlinear in the number of
graphs: there are O(n2) graphs, each of which consists of at most 5 line seg-
ments. The maximum complexity of the upper envelope of n2 segments can be
O(n2α(n)) [4], where α(n) is the inverse function to the Ackermann function. There
are indeed time travel graphs of n points whose upper envelope has quadratic com-
plexity: Figure 2 shows time travel graphs of 6 points. Imagine that we add dn−6

2 e
points along the segment p3p4 and bn−6

2 c points along the segment p5p6, then the
upper envelope has quadratic complexity. Note that the part of the upper enve-
lope in the interval [x2 : x3] of two consecutive x-coordinates of input points has
quadratic complexity. Even when we locate the interval of x-coordinates of input
points that contains the global optimum, we may still need to search the optimum
over the upper envelope with quadratic complexity.

2.1 Highway distance only

We now turn our attention to the special case, where we force each pair to travel
via the highway, that is, tpq(x) = hwx(p, q) for x ∈ R. We consider all the graphs of
highway distances hwx(p, q) for all pairs {p, q} of points in S, and let E denote their
upper envelope. Recall that we view E as the function ω(x) = max{p,q}⊆S hwx(p, q)
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that maps R to R. Note that the function −ω(x) is unimodal.

Lemma 2 Let {a, b} and {c, d} be two pairs of points, and h(x0) be a highway
such that hwx0(a, b) = hwx0(c, d) with max{ax, bx} < x0 < min{cx, dx}. There
always exists a pair {α, β} such that α ∈ {a, b} and β ∈ {c, d}, and hwx0(α, β) >
hwx0(a, b).

Proof. Without loss of generality we assume ay > by and cy > dy. Let Πab and
Πcd be two shortest paths that connect a to b, and c to d via the highway h(x0),
respectively. Let I = Πab ∩ Πcd. There are two cases, either I 6= ∅ or I = ∅, see
Figure 3 and Figure 4.

For r ∈ {a, b, c, d}, let rh be the point on the highway h(x0) with with y-
coordinate ry. For each of these cases, we define three values

σ1 = (dh
y − bh

y)/v, σ2 = (bh
y − ch

y)/v, σ3 = (ch
y − ah

y)/v.

Then, for both cases, hwx0(b, c) = |bbh|+ |cch|−σ2 and hwx0(c, d) = |cch|+ |ddh|−
σ1 − σ2. If hwx0(b, c) > hwx0(c, d), then we are done. Therefore, we assume that
hwx0(b, c) < hwx0(c, d). From this, we get |bbh| < |ddh| − σ1.

We are going to show that hwx0(a, b) < hwx0(a, d). Note that hwx0(a, d) =
|aah|+ |ddh| − σ1 − σ2 − σ3 if I 6= ∅, and hwx0(a, d) = |aah|+ |ddh|+ σ1 + σ2 + σ3

if I = ∅.

hwx0(a, b) = |aah|+ |bbh| − σ2 − σ3

< |aah|+ |ddh| − σ1 − σ2 − σ3

6 hwx0(a, d).
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Figure 3: A tie with Πab ∩Πcd 6= ∅.
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Figure 4: A tie with Πab ∩Πcd = ∅.

The previous lemma, together with the unimodality of −ω(x), immediately
implies the following corollary.

Corollary 1 The x-interval of the minimum of E lies in the maximal x-interval
of the highest valley floor.
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Proof. By Lemma 1, there exists a single unique interval of the minimum of
E . Assume to the contrary that this interval of highway positions does not lie in
the maximal interval [px : qx] of the valley floor with maximum highway distance
hwx∈[px:qx](p, q). By Lemma 2 it must lie in the interval of some valley floor with
a travel distance at most hwx∈[px:qx](p, q). But the travel-time graph tpq(x) has
travel time strictly larger than hwx∈[px:qx](p, q) for any x 6∈ [px : qx], and the valley
floor does not appear on the upper envelope of all travel-time graphs, which con-
tradicts Lemma 1.

2.2 Algorithms

Recall that hwx(p, q) = |px − x|+ |qx − x|+ |py − qy|/v whose time graph consists
of a valley floor s3

pq, a left ray (−∞ : px]× {hwx(p, q)}, and a right ray [qx,∞)×
{hwx(p, q)}.

Lemma 3 The x-interval of the minimum of E realizes the optimal highway place-
ment.

Proof. Clearly, the highest valley floor of all travel-time graphs is still the highest
valley floor in the all highway time graphs.

Assume to the contrary that the highest valley floor doesn’t appear on the up-
per envelope of all highway time graphs. Since the graph of hwx(p, q) coincides
with the graph of tpq(x), except in two intervals (−∞ : `pq) and (rpq,∞), where
hwx(p, q) > tpq(x), this happens only when, in the interval [px : qx], (a) a left
(right) ray lies above s3

pq in the interval [px : qx], or (b) the upper envelope of a left
ray and a right ray lies above s3

pq. For the case (a), the left (right) ray must cross
the right (left) ray of hwx(p, q) at a point strictly higher than s3

pq. Lemma 2 shows
that there exists another valley floor with at least the time of the crossing. For the
case (b), again Lemma 2 shows that there exists another valley floor with at least
the time of the crossing. Therefore we have contradiction that s3

pq is not highest.

The algorithm consists of two steps: first we compute the pair {p, q} of points
that defines the maximal interval of the highest valley floor. From this we get the
x-interval [px : qx] and its highway distance at the valley floor. In the second step,
we compute the rightmost left ray of highway graphs, including the left ray of the
graph of hwx(p, q). This left ray intersects the highest valley floor at a point on E ,
which is an optimal highway placement.

The diametral pair under the L1 metric is one of the two pairs of opposite points
extreme in the directions of vectors (±1,±1). Imagine now that we have a vertical
highway with speed v > 1 between every pair of points. Then the diametral pair
can still be found in linear time as follows: we compute 4 points p1, p2, p3 and p4

extreme in the directions of vectors (±1,±v). These points can be found by linear
search. Then one of the two pairs of opposite points is the diametral pair. This
diametral pair has the maximum highway distance among all pairs separated by a
highway. Therefore, it defines the highest valley floor in the travel-time graphs of
all pairs.

Without loss of generality, assume now that all points have positive x-coordinates,
and the vertical highway lies at x = 0 (See Figure 5.) We define two functions f
and g as follows: for a point p, f(p) := px + py/v and g(p) := px − py/v. Then for
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Figure 5: The highway graph of hwx(p, q) has the highest valley floor. The pair
{p, q} is the diametral pair under the L1 metric such that p is the point extreme
in the direction of the vector (−1,−v) and q is the point extreme in the direction
of the vector (1, v). The rightmost left ray intersects the highest valley floor at a
point on E , which is an optimal highway placement.

each pair (p, q) ∈ S, we can consider two sums of two functions,

f(p) + g(q) = (py − qy)/v + px + qx and f(q) + g(p) = (qy − py)/v + px + qx.

From all pairs of points, the pair {p′, q′} with the maximum sum, f(p′) + g(q′) or
f(q′) + g(p′), realizes the rightmost left ray. Note that this pair can be found by
the two points extreme in the directions of the vectors (1,±v). If p′ = q′, then we
find the second extreme points, p′′ and q′′ in each of directions and find the pair
with maximum sum from {p′, p′′} and {p′, q′′}.

Theorem 1 Given n points in the plane, an optimal axis-parallel highway under
the L1 metric can be computed in linear time.

3 The Optimal Highway under the Euclidean met-
ric

Given a highway speed v > 1, let α = sin−1 1
v . For a point p, we denote by cone(p)

the horizontal solid double cone with apex p and angle 2α in the plane. For a point
p, we denote by p+ the point on h(x) with y-coordinate py + |x − px| tanα, and
denote by p− the point on h(x) with y-coordinate py − |x− px| tanα.

fx(p, q) =

{
(|px − x|+ |qx − x|)/ cos α + (p−y − q+

y )/v for py > qy,

(|px − x|+ |qx − x|)/ cos α + (q−y − p+
y )/v for py < qy.
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We now define the highway distance of the pair {p, q} as

hwx(p, q) =

{
d(p, q) if q ∈ cone(p),
fx(p, q) if q 6∈ cone(p).

Then the travel time distance of the pair {p, q} is defined as tp,q(x) = min{d(p, q),hwx(p, q)}.
Before we prove the main lemma, we need a technical lemma.

Lemma 4 Let {p, q} be a pair of points with px 6 qx. Then, for x in px 6 x 6 qx,
fx(p, q) 6 d(p, q). add the reference to Sang Won’s paper

Now we are ready to give a lemma analogous to Lemma 2.

Lemma 5 Let {a, b} and {c, d} be two pairs of points such that max{ax, bx} <
min{cx, dx}, and b 6∈ cone(a) and c 6∈ cone(d). If hwx(a, b) = hwx(c, d) for some
x = x0 in max{ax, bx} < x0 < min{cx, dx} then, there always exists a pair {α, β}
such that α ∈ {a, b} and β ∈ {c, d}, and hwx0(α, β) > hwx0(a, b).

Proof. Without loss of generality assume that ay > by and cy > dy. We also
assume that min{a−y , b+

y } 6 min{c−y , d+
y }. Let Πab = aa−b+b and Πcd = cc−d+d

be two paths that connect a to b, and c to d via the highway h(x0), respectively.
Let I = Πab ∩ Πcd. There are two cases, either I 6= ∅ or I = ∅. For each of

these two cases, we have a few subcases: (a) a−y > b+
y and c−y > d+

y , (b) a−y > b+
y

and c−y < d+
y (or its symmetric case, a−y < b+

y and c−y > d+
y ), and (c) a−y < b+

y and
c−y < d+

y (see Figure 6 and Figure 7.) For each of these subcases, we define three
values

σ1 = (d+
y − b+

y )/v, σ2 = (b+
y − c−y )/v, σ3 = (c−y − a−y )/v.

Then fx0(b, c) = |bb+| + |cc−| − σ2 and fx0(c, d) = |cc−| + |dd+| − σ1 − σ2. If
fx0(b, c) > fx0(c, d), then we are done. Therefore, we assume that fx0(b, c) <
fx0(c, d). From this, we get |bb+| < |dd+| − σ1.

hwx(a, b) = fx0(a, b) = |aa−|+ |bb+| − σ2 − σ3

< |aa−|+ |dd+| − σ1 − σ2 − σ3

6 fx0(a, d)
6 hwx0(a, d).

(The last inequality follows from Lemma 4.)

3.1 Algorithms

As we did under the L1 metric, we now consider the highway time graphs hwx(p, q)
of all pairs {p, q} of points in S. Then the function ω(x) = max{p,q}⊆Shwx(p, q)
represents their upper envelope E . Clearly, the function −ω(x) is unimodal, and the
x-interval of minimum travel time on E realizes the optimal highway placement.
Again the x-interval of minimum travel time lies in the maximal interval of the
highest valley floor.

Imagine that we have a vertical highway with speed v > 1 between every pair of
points. Then the diametral pair can still be found by computing Farthest neighbour
Voronoi diagram with the highway, which can be done in time O(n log n).
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Figure 6: A tie with Πab ∩Πcd 6= ∅.
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Figure 7: A tie with Πab ∩Πcd = ∅.

Without loss of generality, assume now that all the points have positive x-
coordinates, and the vertical highway lies at x = 0. Then we compute the left ray
with maximum y-intercept from quadratic number of parallel rays, as we did for
the L1 metric. We may use the fast matrix searching technique for finding this
ray. The intersection of this ray with the highest valley floor defines an optimal
placement of the highway. any other idea of doing it faster?

Theorem 2 Given n points in the plane, an optimal axis-parallel highway under
the Euclidean metric can be computed in time O(n log n).

4 Extensions

• What about placing the optimal combination of a vertical and a horizontal
highway?
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